Copyright

Copyright 2021. All material in this report may be reproduced and copied for non-commercial purposes: citation as to source, however, is required. This report is disseminated by the National Department of Health South Africa and the National Institute for Communicable Diseases (NICD).

Suggested citation:

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC).

Acknowledgement

This report was supported by the President’s Emergency Plan for AIDS Relief (PEPFAR) through the Centers for Disease Control and Prevention, under the terms of Cooperative Agreement Number 5U2GGH001631 and the World Health Organization.
Executive Summary

Background: The Antenatal HIV Sentinel Survey (ANCHSS) has been conducted in South Africa since 1990, annually between 1990 and 2015 and biennially since 2015, with the main aim of monitoring HIV epidemic trends among 15–49 year old pregnant women attending antenatal clinics. The 2019 survey was the 28th survey conducted in South Africa. The objectives of the 2019 survey were:

- to estimate HIV prevalence and the geographic distribution of HIV, knowledge of HIV status, and coverage of antiretroviral therapy (ART) among pregnant women attending antenatal care (ANC) in selected public health facilities from across all districts of South Africa, and
- to estimate the coverage of maternal syphilis screening and treatment, the prevalence of unintended pregnancy, and early attendance of ANC.

Methods: A total of 37 116 pregnant women from 1 589 public health facilities, selected from across the 52 districts of South Africa were included in the 2019 survey conducted between 1 October and 15 November 2019. Sentinel sites were selected using multistage stratified cluster sampling method. From each of the 1 589 public facilities, consenting women aged between 15 and 49 years attending ANC were consecutively enrolled until sample size was achieved or until the end of the study period, whichever came first. The target sample size was to enrol 36 015 eligible pregnant women at national level. The data collection procedures included a brief interview of enrolled women by clinic nurses as they performed their routine tasks, medical record review, and blood specimen collection. Demographic and clinical information collected from interviews and medical record review included: age of the woman, gestational age at first booking, HIV testing history, latest HIV rapid test result, ART initiation, timing of ART initiation, and maternal syphilis screening and treatment. To assess pregnancy intent, participants were asked two questions adopted from the London Measure of Unplanned Pregnancy – these questions assessed the woman’s intention to become pregnant before pregnancy, and whether intention to become pregnant was discussed with the partner (i.e. the father of the child) – both questions were answered by the pregnant woman. These two pregnancy intention questions were classified into the following three categories: 1) in both questions the pregnancy was reported as ‘unintended’ 2) in both questions the pregnancy was reported as ‘intended’ and 3) ‘ambivalent (undecided)’ which included responses where one response indicated the pregnancy was intended and the other response did not. A whole blood sample was collected from participants and samples were tested using the routine algorithm for HIV infection on enzyme–linked immunosorbent assay (EIA) 4th generation platforms. All analyses considered the survey design (clustering within facilities and stratification by district) and were weighted for sample size realization (at district level) and for the Statistics South Africa (Stats SA) 2019 mid-year population size of women of reproductive age (15–49 years) at province level. A population finite correction factor was added in all analysis to adjust for the >5% of facilities sampled without replacement from a finite population of about 4 000 public facilities. We reported frequencies and percentages. Ninety-five percent (95%) confidence intervals (CI) or P values from chi-square tests were reported. Data were analysed using STATA 14 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP).
Results: The national antenatal HIV prevalence was estimated at 30.0% (95% CI: 29.4%–30.6%)—this figure was 0.7% points lower than the prevalence reported in 2017 (30.7%, 95% CI: 30.1%–31.3%). The highest HIV prevalence was in KwaZulu-Natal (40.9%, 95% CI: 39.6%–42.3%) followed by Eastern Cape (36.5%, 95% CI: 35.2%–37.9%). The lowest overall HIV prevalence was in Western Cape at 17.9% (95% CI: 16.2%–19.7%). HIV prevalence among the 15–24 year age group continued to show steady decline—with prevalence declining from 11.2% to 10.3% (P value=0.07) and from 21.8% to 19.4% (P value <0.01) among the 15–19 year and 20–24 year age groups respectively between 2017 and 2019.

Of the 11 321 HIV-positive pregnant women in the survey, 97.6% (11 046) already knew they were HIV-positive at the time of the survey, and of these, 96.0% (10 271) were already on ART at the time of the survey. The coverage of ART in the prevention of mother-to-child transmission (PMTCT) programme was high in all age group.

Among a total of 10 778 EIA positive participants whose timing of HIV diagnosis was reported, 72.7% (7 912) knew their HIV-positive status before pregnancy. Of those who knew their HIV-positive status before pregnancy and whose treatment status was reported (7 735), 93.3% (7 207) were initiated on ART before pregnancy. Knowledge of HIV-positive status before pregnancy significantly improved (by 19.6%) between the 2017 (60.8%, 95% CI: 59.9%–61.7%) and 2019 (72.7% (95% CI: 71.9%–73.4%) surveys. Knowledge of HIV-positive status before pregnancy was significantly lower among younger women (15–19 years and 20–24 years: 47.6% and 59.4% respectively) compared to older women (35–49 years: 85.1%, P value <0.01).

More than half (51.6%) of the pregnancies in this study were unintended. Adolescent girls (15–19 years) (76.3%, 95% CI: 74.9%–77.6%) and young women (20–24 years) (56.5%, 95% CI: 55.4%–57.6%) had higher prevalence of unintended pregnancy compared to older women (35–49 years) (45.2%, 95% CI: 43.9%–46.6%). Participants in a non-cohabiting relationship (64.3%, 95% CI: 63.4%–65.2%) and single women (76.0%, 95% CI: 73.9%–78.0%) had higher prevalence of unintended pregnancy compared to participants who were married (27.0%, 95% CI: 26.0%–28.1%) or cohabiting with their partner (41.4%, 95% CI: 40.3%–42.5%). More than two-thirds (70.1%, 95% CI: 69.5%–70.7%) of participants attended their first-ANC-visit before 20 weeks of pregnancy. Attendance of ANC before 20 weeks of pregnancy was significantly lower among participants whose pregnancy was unintended (66.7%, 95% CI: 66.0%–67.4%) compared to participants whose pregnancy was intended (74.3%, 95% CI: 73.5%–75.2%).

Maternal syphilis screening coverage was 96.4% at national level. All provinces had greater than 90% maternal syphilis screening coverage. Of those who had syphilis screening, 2.1% (95% CI: 2.0%–2.3%) were positive for syphilis, 79.4% were negative, 17.3% were awaiting results and 1.2% of results were not in the patient file. After excluding the pending results and the results not in the file, the prevalence of syphilis (per medical record review data) among those who had a syphilis test result, was 2.6% (95% CI: 2.4%–2.9%) (793) at national level. Compared to the prevalence of syphilis in 2015 (which was 2.0% based on laboratory testing), the current syphilis prevalence represents a 30% increase in prevalence between 2015 and
2019. The highest syphilis prevalence was in Eastern Cape at 3.8% (95% CI: 2.6%−5.4%) and the lowest was in Limpopo at 1.4% (95% CI: 1.0%−1.8%). Of 729 participants who were syphilis positive and whose syphilis treatment status was reported, 92.3% (671) received treatment for syphilis. Most (93.1%, 553) of those treated for syphilis with treatment data available (599) were treated with Benzathine Penicillin G.

Conclusion: HIV prevalence among pregnant women has remained largely unchanged at around 30% since 2004. The consistent decline in HIV prevalence among young women (15–24 years) is encouraging as this age group experiences a high rate of HIV incidence (1.5%) compared to their male counterparts (0.5%). The high PMTCT ART coverage regardless of age group shows the success of the PMTCT programme. Promising progress has been observed in the number of HIV-positive women initiating ART before pregnancy, although young women (15–24 years) were still less likely to know their HIV-positive status before pregnancy compared to older women (>35 years).

Despite free contraceptive services provided in public health facilities in South Africa, the prevalence of unintended pregnancy was very high. Innovative strategies need to be deployed in order to increase uptake of contraceptives and dual protection, particularly amongst young women, for instance by expanding the available channels for accessing contraception through private-sector partnerships and the chronic medicines dispensing and distribution (CCMDD) programme. Providing information (through national educational media campaigns) on available contraceptive choices could enable women and couples to find an option that suits their individual needs. In collaboration with the Departments of Basic Education, Higher Education and Social Development, strategies to strengthen school based sexual and reproductive health education could be developed to address the dual burden of HIV/sexually transmitted diseases and unplanned pregnancy among adolescent girls and young women. Additional research could be done into Adolescent and Youth Zones at facilities to identify specific strategies that have been successful and could be scaled-up nationally.

According to these data, syphilis prevalence increased from 2.0% in 2015 to 2.6% in 2019 – this finding is concerning, particularly in the context of the severe adverse pregnancy and neonatal outcomes associated with maternal syphilis. Increasing testing coverage and improving turnaround time of results, through the launch of the dual HIV/Syphilis rapid test, and improved treatment rates, through ensuring the availability of Benzathine Penicillin are key strategies for the eradication of congenital syphilis. Broader screening could also be undertaken to determine if the observed pattern of increasing syphilis prevalence is found in other populations, and suitable strategies should subsequently be implemented based on these findings. This could, in particular, be considered amongst key populations and contraceptives service clients.
Acknowledgements

We wish to thank the following individuals and organizations for their contribution in the survey. We thank all the women who agreed to participate in the survey. Special thank you to all the nurses in the clinics for their continued dedication, and professionalism over the past 28 years in the implementation of this survey. The National Institute for Communicable Diseases (NICD) and the National Department of Health (NDoH) provided strategic leadership and technical oversight of the coordination and implementation of this survey. Particular thanks goes to Professor Adrian Puren and Dr Selamawit Woldesenbet (Centre for HIV and STI, NICD), Dr Yogan Pillay (DDG: HIV/AIDS, MNCH and TB, NDoH) and Dr Peter Barron (Technical assistant to the NDoH) for their key role in providing technical support and leadership at all stages of the survey. Funding for the survey was provided through the NDoH, World Health Organization (WHO), and the U.S. Center for Disease Control and prevention (CDC), the President’s Emergency Plan for AIDS Relief (PEPFAR).

Our appreciation goes to the provincial coordinators: Mr Z. Merile (Eastern Cape), Ms M. Nophale, Ms M. Mothibi (Free State), Dr B. Ikalafe (Gauteng), Ms. N. Mbana, Ms G. Khumalo (KwaZulu-Natal), Ms F. Nkobeni, Ms M. Monwa (Limpopo), Mr J. Sigudla, Dr T. Mona (Mpumalanga), Ms N. Kopang, Ms T. Nondanyana, Mr B. Mashute (Northern Cape), Ms M. Motswasele, Ms N. Mangonyane (North West), Ms V. Mudaly (Western Cape) and their teams who coordinated the survey in their respective provinces and districts. Sincerest gratitude is also extended to the National Health Laboratory Services (N HLS) and NICD testing laboratories and coordinators: Ms B. Singh, Ms Z. Brukwe (NICD, Gauteng), Ms H. Vilakazi, Mr P. Moyeni, Mr B Tembe (Eastern Cape), Ms M. Nkonyane, Mr P. Letanta, Ms H. Potgieter, Mr M. D. Morobadi (Free State), Ms I. Chetty, Mr M. Ellapen (Inkosi Albert Luthuli Hospital, University of KwaZulu-Natal), Ms R. Diokana, Mr J. Ngwenya (Dr George Mukari, Limpopo and North West), Mr I. Mofokeng (Rob Ferreira Nelspruit, Mpumalanga), and Dr H. Vreede, Mr Z. Isaacs and Ms A. Stewart (Groote Schuur Hospital, Western Cape and Northern Cape).

We thank Ms L. Jankelowitz and Ms M. Sibanyoni from South African HIV Clinicians Society (SAHCS) for their role in organizing and facilitating the training of provincial survey coordinators, recruiting data clerks, and providing telephonic technical support to provincial survey coordinators during the implementation of the survey; and Ms E. Cutler and Dr G. Hunt from NICD for coordinating all laboratory aspects of the survey as well as facilitating the setup of the Optical Mark Recognition (OMR) software for electronic capturing of data and for overseeing data capturing. We thank all data clerks and their managers (Ms K. Richards and Ms C. Harrison) for their superb job in performing data quality checks on completed data collection forms and communicating data quality problems in a timely manner to the central team. We thank Dr T. Bell and Dr H. Vreede for extracting the laboratory data bi-weekly from the NHLS laboratory information system.

A special thanks to Dr Selamawit Woldesenbet (NICD) for writing this report. A special thank you to Professor Carl Lombard (South African Medical Research Council–SAMRC), Professor Samuel Amanda (SAMRC) and Mr Kassahun Ayalew (CDC) for assisting in the analysis of the data. We are very grateful for the technical advice, constructive criticism and inputs and support of the antenatal survey technical working group members, Dr Tendesayi Kufa-Chakezha (NICD), Professor Adrian Puren (NICD), Dr Yogan Pillay (NDoH), Professor Carl
Lombard (SAMRC), Professor Samuel Manda (SAMRC), and Ms Mireille Cheyip (CDC). The following individuals made extensive input in the recommendations section of the survey: Dr Manala Makua (NDOH), Dr Thato Chidarikire (NDOH), Ms Sanjida Karim (Clinton Health Access Initiative –CHAI), Ms Derusha Frank (CHAI), and Mr Philip Dorrell (CHAI). We thank Dr Sergio Carmona (NHLS) for his contribution in questionnaire design, and for his unreserved guidance and support during the preparation phase of the survey.
Contents

Executive Summary ... 3
Acronyms ... 12

Chapter 1: Introduction ... 13
 1.1. Background ... 13
 1.2. Aim .. 14
 1.2.1. Primary objectives ... 14
 1.2.2. Secondary objectives .. 14

Chapter 2: Methodology ... 15
 2.1. Study design .. 15
 2.2. Sample size ... 15
 2.3. Sampling of sites ... 15
 2.3.1. Inclusion and exclusion criteria for sites .. 16
 2.4. Sampling of women .. 16
 2.5. Data collection ... 16
 2.5.1. Collection and transfer of demographic information 17
 2.5.2. Collection and transport of blood ... 18
 2.6. Laboratory methods ... 18
 2.6.1. Specimen testing for HIV ... 18
 2.6.2. Laboratory quality assurance ... 19
 2.7. Training and survey monitoring .. 19
 2.7.1. Technical support and quality control visits during survey execution 20
 2.8. Data management .. 20
 2.9. Data analysis .. 21
 2.10. Ethical considerations .. 23
 2.11. Scope of the report ... 23

Chapter 3: Results .. 24
 3.1. Flow chart of participants included in the analysis ... 24
 3.1.1. Sample size realization at national and provincial level 25
 3.2. Characteristics of survey participants ... 25
 3.3. National HIV prevalence .. 27
 3.3.1. HIV prevalence by province ... 27
 3.3.2. HIV prevalence trend by age ... 30
 3.3.3. HIV prevalence by district ... 31
 3.4. PMTCT cascade – the first and second 90 ... 34
3.5. Knowledge of HIV-positive status and ART initiation before pregnancy 34
3.6. Pregnancy intention ... 36
3.7. Early ANC attendance ... 38
3.8. Maternal syphilis screening and treatment coverage 39

Chapter 4: Conclusions and Recommendations ... 42
References ... 49
Annexure 1: Data collection form ... 52
Annexure 2: Information sheet ... 54
Annexure 3: Fourth generation serology platforms ... 55
Annexure 4: Detailed provincial reports ... 56
List of Tables

Table 1: Data collected in the 2019 Antenatal HIV Sentinel Survey, South Africa..............17
Table 2: London Measure of Unplanned Pregnancy (LMUP) scoring applied in the Antenatal HIV Sentinel Survey pregnancy intention questions, 2019...22
Table 3: Sample size realization by province, Antenatal HIV Sentinel Survey, South Africa, 2015–2019...25
Table 4: Distribution of survey participants by five-year age group, 2013–2019, Antenatal HIV Sentinel Survey, South Africa ..26
Table 5: Sample size distribution by province and visit type, 2019, Antenatal HIV Sentinel Survey, South Africa...26

List of Figures

Figure 1: Flow chart of observations excluded from the analysis, in the 2019 Antenatal HIV Sentinel Survey, South Africa...24
Figure 2: The HIV epidemic curve among antenatal women, South Africa, 1990–2019, Antenatal HIV Sentinel Survey ...27
Figure 3: HIV prevalence among first-ANC visit attendees, follow-up ANC visit attendees and overall by province, in the 2019 Antenatal HIV Sentinel Survey, South Africa28
Figure 4: Overall HIV prevalence (2015–2019) and change in provincial HIV prevalence estimates (2017–2019), Antenatal HIV Sentinel Survey, South Africa ...29
Figure 5: HIV prevalence trend among first-ANC-visit attendees by province (2012–2019), Antenatal HIV Sentinel Survey, South Africa ...30
Figure 6: HIV prevalence trend by age group at national level, 2001–2019, Antenatal HIV Sentinel Survey, South Africa...30
Figure 7: National HIV prevalence trend by age group among first-ANC-visit attendees, 2012–2019, Antenatal HIV Sentinel Survey, South Africa..31
Figure 8: HIV prevalence among pregnant women by district, 2019, Antenatal HIV Sentinel Survey, South Africa...32
Figure 9: Change in HIV prevalence from 2017 to 2019 by district, Antenatal HIV Sentinel Survey, South Africa...33
Figure 10: Knowledge of HIV-positive status (A) and ART initiation (B) by province, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, South Africa...34
Figure 11: Knowledge of HIV-positive status (A) and ART initiation (B) before pregnancy by province, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, South Africa....................................35
Figure 12: Knowledge of HIV-positive status (A) and ART initiation (B) before pregnancy by age group, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, South Africa..........................36
Figure 13: Pregnancy intention by age group in the 2019 Antenatal HIV Sentinel Survey, South Africa...37
Figure 14: Unintended pregnancy by province, in the 2019 Antenatal HIV Sentinel Survey, South Africa...37
Figure 15: Early attendance of antenatal care by province in the 2019 Antenatal HIV Sentinel Survey, South Africa...38
Figure 16: Maternal syphilis screening coverage among antenatal women, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, South Africa .. 39
Figure 17: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel survey, South Africa .. 40
Figure 18: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, South Africa.. 41
Figure 19: Syphilis treatment coverage by province among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, South Africa ... 41
Acronyms

AIDS Acquired Immunodeficiency Syndrome
ANC Antenatal care
ANCHSS Antenatal HIV sentinel survey
ART Antiretroviral therapy
BPG Benzathine penicillin G
CCMDD Chronic medicines dispensing and distribution
CDC Centers for Disease Control and Prevention
CI Confidence interval
DHIS District Health Information System
EC Eastern Cape province
eMTCT Elimination of mother-to-child transmission
EIA Enzyme-linked immunosorbent assay
FS Free State province
GP Gauteng province
HIV Human Immunodeficiency Virus
HSRC Human Sciences Research Council
IQR Interquartile range
KZN KwaZulu-Natal province
LP Limpopo province
MMC Male medical circumcision
MP Mpumalanga province
MTCT Mother-to-child transmission
NC Northern Cape province
NDoH National Department of Health
NHLS National Health Laboratory Service
NICD National Institute for Communicable Diseases
NMC Notifiable Medical Condition
NSP National strategic plan
NW North West province
PLHIV People living with HIV
PMTCT Prevention of mother-to-child HIV transmission
PPS Probability proportional to size
PSU Primary sampling unit
RPR Rapid Plasma Regain
SAHPRA South African Health Products Regulatory Authority
SAMRC South African Medical Research Council
SANAS South African National Accreditation System
Stats SA Statistics South Africa
STI Sexually transmitted infections
UNAIDS The Joint United Nations Programme on HIV/AIDS
WC Western Cape province
WHO World Health Organization
Chapter 1: Introduction

1.1. Background

South Africa remains the global epicentre of the HIV epidemic, accounting for more than a quarter of new HIV infections in East and Southern African countries and had an estimated 7.5 million people living with HIV (PLHIV) in 2019[1]. Despite having the largest HIV epidemic, the country has made significant progress in reducing new HIV infections and AIDS related deaths by 39% and 50% respectively between 2010 and 2018[2]. Access to HIV testing and effective antiretroviral therapy (ART) has also improved substantially with the implementation of the test and treat initiative, and increased availability of affordable drugs with fewer side effects. The country remains committed to the Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 targets which aim to ensure 90% of PLHIV know their HIV status, 90% of people diagnosed with HIV receive sustained ART and 90% of people on ART have viral suppression by 2020, with these targets increasing to 95% by 2030[3].

Available evidence shows that South Africa has met the first 90 of the UNAIDS 90-90-90 targets at national level[2]. In 2019, at national level, 92% of PLHIV knew their HIV status although there was substantial sub-population level variation (e.g. by age) in the achievement of this target[2, 4, 5]. For the second 90/ART coverage target, as of September 2019, 70% of HIV-positive people who knew their HIV status nationally were receiving ART, which is far below the 90% ART coverage target for 2020[6]. Challenges to reaching the second 90 target include lack of facilitated linkage and loss to follow-up[2, 7-10]. According to the 2017 household survey, South Africa has also been progressing well towards the third 90 target, with 87.5% of PLHIV on ART being virally suppressed[11]. However, viral load monitoring, which plays a crucial role in the progress towards the 3rd 90 target, remains low (<75%) in South Africa[6].

The South African National Strategic Plan (NSP) for 2017−2022 highlights the need to focus HIV responses on areas and populations that have been disproportionately affected by the disease[12]. One of the target populations identified in the NSP as a disproportionately affected group are women of child-bearing age, and particularly adolescent girls and young women due to the extremely high rate of HIV infection in this population. In the 2017 household survey, women between the ages of 15–49 years and adolescent girls and young women (15–24years) respectively accounted for 46.3% and 28.5% of new HIV infections in the country, which highlights the need to monitor HIV prevention services targeting this population[11].

The Antenatal HIV Sentinel Survey (ANCHSS) is a survey conducted every two years in South Africa to monitor the HIV epidemic and the progress towards the 90-90-90 targets among pregnant women attending public health facilities. A significant proportion of pregnant women (about 40%) in South Africa are adolescent girls and young women[13]. The survey addresses a number of important public health questions relevant for programme and policy evaluation. The last (2017) antenatal survey which estimated HIV prevalence, HIV incidence, and progress towards the 90-90-90 targets at national and sub-national level highlighted the low viral suppression rate (<70%) among pregnant women despite the high coverage of antenatal care
(ANC) testing and ART initiation in this population[13]. The 2017 survey also highlighted the need to improve implementation of preconception care including HIV testing prior to conception and early ANC attendance so that treatment for HIV-positive women can be initiated as early as possible.

This report presents the findings of the 2019 antenatal survey. The 2019 survey assessed the HIV status of pregnant women (i.e. HIV prevalence), knowledge of HIV status, and coverage of ART among pregnant women attending ANC services in selected sentinel sites from across all districts of South Africa. The coverage of maternal syphilis screening and treatment, the prevalence of intended and unintended pregnancy, and early attendance of ANC were also estimated in the 2019 antenatal survey as these elements are crucial for improving pregnancy outcomes of both HIV-negative and HIV-positive women. These factors also serve as key indicators for measuring progress towards the joint elimination of HIV and syphilis.

1.2. Aim

To monitor trends in HIV prevalence and the progress towards the UNAIDS first and second 90 targets among pregnant women between 15 to 49 years old attending public ANC clinics in South Africa at the national, provincial, and district levels.

1.2.1. Primary objectives

- To determine the geographical distribution and pattern of HIV sero-prevalence among pregnant women between the ages of 15 and 49 years who attend public ANC clinics in South Africa, at national, provincial and district levels.
- To monitor HIV prevalence trends over time among pregnant women attending public ANC clinics in the following two domains:
 (a) 15–49 years old, at national and provincial level
 (b) 15–24 years old, at national level.

1.2.2. Secondary objectives

- To determine what proportion of HIV-positive pregnant women 15–49 years old, attending ANC clinics, know their HIV status (1st 90: knowledge of HIV status).
- To determine what proportion of known HIV-positive pregnant women 15–49 years old are receiving ART (second 90: ART coverage).
- To determine the prevalence of unintended pregnancy among pregnant women 15–49 years old attending ANC clinics.
- To determine the prevalence of early (≤12 weeks) ANC initiation among (15–49 years old) pregnant women attending ANC clinics.
- To determine the coverage of maternal syphilis screening and treatment among (15–49 years old) pregnant women attending ANC clinics.
Chapter 2: Methodology

2.1. Study design
The South African antenatal survey is a cross-sectional survey conducted every two years to monitor trends in HIV prevalence among pregnant women attending ANC in public health facilities. Multistage stratified cluster sampling design was used to select sentinel sites.

2.2. Sample size
The 2019 survey envisaged enrolling 36 015 pregnant women attending ANC service from 1 589 public health facilities. As in the previous surveys, the sample size determination was guided by the following two main objectives of the survey: (1) to estimate HIV prevalence within an acceptable level of precision, and (2) to measure change in HIV prevalence over time. For the first objective, the calculation was performed to estimate HIV prevalence at district level with a precision level of 3–5%, with 95% confidence interval (CI), design effect of 1.5, and 10% error rate (for loss of specimens and data collection forms, incomplete reporting, etc.).

For the second objective, with the calculated sample size for the first objective, it was possible to detect the following prevalence trends over time at 5% significance level, 80% power on a two–sided test, design effect of 1.5, and 10% error rate:
(i) A 1.3% HIV prevalence change over time at the national level,
(ii) A minimum expected 3–5% change in HIV prevalence over time at the provincial level, and
(iii) A 1.6% HIV prevalence change over time among the 15–24-year age group at the national level.

2.3. Sampling of sites
The 2019 survey included all sites (except closed clinics) which were sampled and visited in the previous antenatal surveys. Sites were sampled based on geographical distribution, covering all nine provinces and 52 districts. Sample size (of pregnant women) calculated at district level was allocated proportionally to the following six strata: urban, semi-urban, and rural clinics and small, medium, and large facilities. The rural, urban, and semi-urban categories were determined by geo-coordinates and information on ward-level geographical type classification from the 2011 census conducted by Statistics South Africa (Stats SA)[14]. Facilities were classified as small, medium, and large by using quantile values of the district antenatal visit volume data (from 2016 annual report) as proxy measure for size. Eligible sentinel sites within each stratum were selected according to the probability proportional to size (PPS) sampling method (using antenatal visit volume as a proxy for size of facility). Since the sampling period was the same for each facility, this produced a self-weighting sample for each district. A fixed (equal) sample size was allocated for each clinic within a stratum.
2.3.1. Inclusion and exclusion criteria for sites

Eligible facilities that took part in the 2017 survey were included in 2019. Sites were sampled in 1990 and 2006. In the 2006 sampling, to be included as a sentinel surveillance site, the public clinic had to:

- provide pregnancy testing and ANC services;
- have a minimum of 20 first-ANC-visit attendees per month;
- routinely draw blood from ANC-clients, with facilities to store sera at 4 degrees Celsius (∘C);
- be able to transport biological specimens to the nearest regional laboratory within 24 hours.

In addition, the facility staff had to be willing and able to conduct the survey. Only public facilities were included.

No other criteria were applied when selecting sites: in particular, sites were not selected specifically to monitor either high risk or low risk sub-populations, nor with the aim of monitoring interventions.

2.4. Sampling of women

During the designated enrolment period, consenting pregnant women attending ANC at the survey sentinel sites were consecutively enrolled into the survey.

Inclusion criteria
- Consenting pregnant women aged 15–49 years, attending the antenatal clinic either for the first time or for follow-up visits during their current pregnancy in the survey period were eligible for inclusion, regardless of their HIV status or previous (or current) history of routine HIV test.

Exclusion criteria
- Pregnant women who previously visited the clinic during this survey period were excluded to avoid duplicate sampling. Survey barcodes were put on the medical record of survey participants to indicate their participation in the survey. This was used to identify and exclude women who already participated in the 2019 survey from being sampled twice.
- Pregnant women aged <15 years or ≥50 years.
- Women who refused to participate in the survey.

2.5. Data collection

The survey was conducted between 1 October to 15 November 2019. In most provinces due to delay in distribution of survey materials, the survey started in the 2nd week of October 2019. To compensate for this delay, for those facilities that were affected by the delay, the survey was extended by 1–2 weeks. The data collection procedures included written informed consent, a brief interview, medical record review, and blood specimen collection. Women were offered enrolment into the survey during their ANC visit. The ANC nurse, after providing routine services, assessed the eligibility of subjects to participate in the survey. Baseline data on four demographic indicators were collected from each eligible woman, using the data collection 1

1 Site were selected in 2006 during which time the inclusion/exclusion criteria for site selection was applied. In the surveys after 2006, all sites selected in 2006 were included unless they were closed or non-functional. Closed/non-functional sites were replaced by new clinics.
form (Annexure 1): age, relationship with the father of the child, race, and type of antenatal visit – first or follow-up visit. Following this, the information sheet (Annexure 2), adapted with permission from the South African Medical Research Council’s prevention of mother-to-child HIV transmission (PMTCT) survey consent form[15], was given to the participant to read; if necessary, the nurse would read the information sheet to the participant. The information sheet described the objectives of the study, the potential benefit and harm of participating in the study, participants’ privacy, participants’ right to refuse to participate in the study without any penalty and returning of HIV test results. Nurses were trained to explain the information sheet in the language used for communication during consultation.

After giving written consent, participants were interviewed briefly, and a blood specimen was taken. For first-ANC-visit attendees, the blood sample for the antenatal survey was collected at the same time as the routine blood specimen for syphilis testing. For follow-up ANC attendees, a blood sample was collected for the antenatal survey only.

2.5.1. Collection and transfer of demographic information

The attending health worker completed the form (Annexure 1) used to collect the demographic and clinical information listed in Table 1. Data were extracted from medical records where available and documented on the form. New questions added in the 2019 survey and the method of collection for each demographic and clinical information is described in Table 1. In 2019, three new questions were added as follows: gestational age at first ANC booking, syphilis treatment, and pregnancy intention. In addition, the options for the ‘marital status’ question were amended as illustrated in Table 1, giving separate options for those who were single (with no relationship) and those in a relationship but living apart. The marital status question was also rephrased to ask of “relationship with the father of the child” instead of marital status in general, in order to avoid ambiguity in the case of participants with multiple partners.

Table 1: Data collected in the 2019 Antenatal HIV Sentinel Survey, South Africa

<table>
<thead>
<tr>
<th>Data source</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical record review</td>
<td>• Province, district, health facility</td>
</tr>
<tr>
<td></td>
<td>• Date of specimen collection</td>
</tr>
<tr>
<td></td>
<td>• Age of the woman</td>
</tr>
<tr>
<td></td>
<td>• Visit type, and gestational age</td>
</tr>
<tr>
<td></td>
<td>• Gestational age at first booking</td>
</tr>
<tr>
<td></td>
<td>• Routine HIV testing uptake, routine HIV test result</td>
</tr>
<tr>
<td></td>
<td>• ART initiation, timing of ART initiation (if available from medical record, otherwise self-reported)</td>
</tr>
<tr>
<td></td>
<td>• Maternal syphilis screening and syphilis treatment</td>
</tr>
<tr>
<td>Self–reported</td>
<td>• Race of the woman, level of education, relationship with the father of the child (with options: married, living together, in a relationship but not living together, no relationship).</td>
</tr>
</tbody>
</table>
• Gravidity, parity, age of the father of the child

Pregnancy intention using 2 questions adopted from the London Measure of Unplanned Pregnancy (LMUP). The questions included were:

LMUP item 3: “Just before I became pregnant…” with response options:
 • I intended to get pregnant,
 • My intentions kept changing,
 • I did not intend to get pregnant

LMUP item 5 “Before I became pregnant…” with response options:
 • The father of the child and I had agreed that we would like me to be pregnant,
 • The father of the child and I had discussed having children together, but hadn’t agreed for me to get pregnant,
 • We never discussed having children together.

(see also Annexure 1)

Both LMUP questions were answered by the pregnant women.

The completed data collection form was sent to the regional serology laboratory (with the blood specimen) where HIV test was done. After the HIV tests were performed, the data collection forms, and the leftover specimens were sent to the reference laboratory at National Institute for Communicable Diseases (NICD) for viral load and incidence tests to be performed.

2.5.2. Collection and transport of blood

The clinic nurses collected 8.5 ml of whole blood into the Ethylenediaminetetraacetic acid (EDTA) tubes supplied. Each tube was labelled with a barcode, and stored at 4 °C. At the close of each day, supervisors (clinic managers) checked the forms against the blood samples for completeness and possible mismatches. The NICD and National Health Laboratory Service (NHLS) were responsible for coordinating and facilitating the transport of specimens by routine courier from the sentinel sites to the designated survey laboratories. The samples were transported in cooler boxes maintained at 4°–8°C, with the temperature continuously monitored by trackers.

2.6. Laboratory methods

2.6.1. Specimen testing for HIV

Standardized HIV testing strategies, as outlined in the national HIV testing guideline (2016), were used[16]. Two fourth-generation HIV-1 enzyme immunoassays were used to test for HIV infection, following the manufacturer’s instructions, including appropriate quality control
specimens (see annexure 3 for full details of tests used). All plasma samples were tested at the regional laboratories, using the first enzyme-linked immunosorbent assay (EIA 1). Specimens that tested negative on first EIA were classified as negative. All samples that tested reactive using EIA 1 were re-tested using a second and different EIA (EIA 2). If EIA 1 and EIA 2 were in agreement the result was classified “HIV-positive”. If EIA 1 and EIA 2 were not in agreement the result was recorded as “discrepant”. The specimen information, including EIA 1 and EIA 2 results, were captured in an electronic lab information system called TrakCare. Further confirmatory testing (such as Western blot) could not be done as part of this survey on all positive specimens as it was not feasible based on cost and time. However, a proportion of the specimens (i.e. specimens with normalized optical density (ODn) of \(\leq 0.4 \) in a Limiting Antigen Avidity Enzyme Immunosorbent Assay test) were tested using Western blot (Bio Rad GS HIV-1 Western Blot; Bio-Rad Laboratories, Redmond, WA 98052, USA) to identify false positive results and ensure accuracy of test results returned to participants – testing using Western blot has not been finalized at the time of this report writing therefore the Western blot results could not be included in the current report.

The final HIV test results were returned to participants if they were unaware of their HIV status or if there was a discrepancy between the results of the survey-provided laboratory test and the routine clinic test. During data collection, the name of the participant, cell phone number and the barcode was collected in a separate confidential register that stayed at the antenatal clinic. The antenatal nurse used the cell phone number of participants to contact and return results of participants with discordant result and those who missed routine HIV testing. The identifying information documented on the register was used to link HIV test results returned from the laboratory with participants’ files. Discordant results were handled per the national guideline.

2.6.2. Laboratory quality assurance

The NICD was responsible for monitoring key laboratory performance indicators against specific targets. All participating testing laboratories were SANAS-accredited (South African National Accreditation System), based on ISO15189-2012, and/or had an NHLS compliance audit score of over 80%.

2.7. Training and survey monitoring

Before the scheduled commencement of the survey, one-day training sessions were held at the national level, in all nine Provincial Health offices and at the district level. The national training was organized by the NICD and the South African HIV Clinicians Society (SAHCS) and was attended by provincial HIV and AIDS coordinators, and laboratory personnel. A train-the-trainers approach was adopted to cascade the training down to provincial, district and facility staff. Provincial and District Department of Health (DOH) offices were responsible for coordinating the provincial and district level training sessions (including funding, logistics and training). Health care providers were responsible for undertaking further orientation upon their return to their respective facilities for midwives, nurses and other staff who were directly involved in the survey. The training covered: criteria for selection of the sites; screening and recruitment of pregnant women; obtaining informed consent, questionnaire administration;
blood sample collection; labelling, coding and storage of samples; sample transportation; laboratory testing for HIV; return of results; handling of discordant results; confidentiality and ethical issues; supervision and quality assurance procedures; and standard laboratory operating procedures.

2.7.1. Technical support and quality control visits during survey execution

Provincial and District Department of Health offices organized and managed all survey monitoring activities. Personnel from the district health office conducted site visits. In some provinces, provincial survey teams joined site visits. Weekly clinic level survey progress reports were produced by the NICD team which were used by provincial survey coordinators to monitor and improve survey progress. One data clerk was recruited at each designated laboratory to perform data quality checks on completed data collection forms. Identified data quality gaps were reported to the central data quality manager who provided daily feedback to provincial survey coordinators on the identified data quality gaps. The NICD lab team conducted site visits to the designated labs to discuss and assist in addressing challenges faced during the survey. Personnel from the SAHCS provided telephonic technical support to provincial survey coordinators during survey implementation.

2.8. Data management

Data collected on paper (the data collection forms) were converted into an electronic database by data clerks at NICD using optical mark recognition (OMR) software. The electronic database was uploaded on the NICD server and data was exported directly to STATA14 (StataCorp. 2015. *Stata Statistical Software: Release 14*. College Station, TX: StataCorp LP) [17] for data cleaning and analysis.

All EIA screening and confirmatory test results were exported from TrakCare (the NHLS electronic laboratory information system) to Excel. The laboratory data exported to Excel were then merged with the interview data extracted from the NICD server, using STATA 14. Queries such as missing laboratory data and missing data collection forms were sent to the staff responsible at NICD and National Department of Health (NDoH), i.e. laboratory managers and provincial coordinators respectively, and data were cleaned. The final database excluded observations for participants outside the age range of 15–49 years, those with no interview data, rejected or lost specimens and those with equivocal or unconfirmed HIV test results. Anonymous data were shared with South African Medical Research Council (SAMRC) and Centers for Disease Control and Prevention (CDC) for parallel data analysis. Data will be stored for future use at NICD on a password-protected computer and will be backed-up onto server with access restricted to those who analyse the data. Paper based data collection forms and consent forms were stored at DOH provincial offices in a secure locked cabinet. The paper-based data collection forms and consent forms will be retained (for audit and inspection) at least for 5 years after data analysis is completed. After 5 years, the consent and data collection form will be shredded.
2.9. Data analysis

Data were analysed using STATA 14 at the NICD office, in collaboration with statisticians from the SAMRC and CDC. A working group composed of NICD and SAMRC reviewed the technical aspects of the data analysis and outputs.

All analysis took into account the survey design (clustering within primary sampling units – PSUs, and stratification by district) and was weighted for sample size realization (at district level) and for the Stats SA 2019 mid-year population size of women of reproductive age (15–49 years) at province level. The surveys prior to 2019 (i.e. 1990–2017) were weighted for the mid-year population size of reproductive age (15–49 years) women in the respective years using Stats SA data. Given that sites were sampled using PPS, and that the sampling period was fixed, this provided a self-weighted sample at district level. A population finite correction factor was added, to adjust for the >5% of PSUs sampled without replacement from a finite population of about 4 000 public facilities.

Descriptive analyses included a summary of sample size realization and data distribution by district, province, nationally, and by age, gravidity, race group, and visit type (first or follow-up ANC visit). Median and interquartile ranges (IQR) were reported for continuous variables, while frequencies and percentages were reported for categorical variables. The primary outcome of the survey was HIV prevalence: defined as the proportion of eligible pregnant women who participated in the survey with positive HIV EIA test. Descriptive analysis provided HIV prevalence at national, provincial and district level, by age group (5-year age bands, and the 15–24 years category), and visit type (first or follow-up ANC visit). HIV prevalence was compared across provinces and districts, and by visit type, with P values from chi-square tests and trend analysis reported for statistically significant differences.

The HIV prevalence trend for 2012–2019 (excluding 2015) was analysed by 5-year age band and by province. This analysis was restricted to first-ANC-visit attendees, because the inclusion of follow-up visit attendees was expected to result in a slight increase in overall HIV prevalence, owing to new HIV infections acquired during pregnancy. The 2015 survey was excluded from this trend analysis, as the data were not identified by visit type. A separate analysis compared HIV prevalence among all pregnant women for the period 2015, 2017 and 2019 by province and district. For all prevalence estimates, 95% CIs are reported.

The PMTCT cascade analysis included: uptake of HIV testing, knowledge of HIV-positive status, and ART coverage (2nd 90). Knowledge of HIV-positive status and ART initiation before pregnancy was estimated, in order to assess the coverage of ART among women of reproductive age in the general population in the test and treat era. The denominator for knowledge of HIV-positive status before pregnancy was the number of EIA positive individuals. Of those who knew their HIV-positive status before pregnancy the proportion who

2 The surveys prior to 2015 enrolled only first-ANC-visit attendees. In the 2015 survey, although both first-ANC-visit attendees and follow-up attendees were included, the data were not identified by visit type (i.e. on which visit each participant was tested was not known). In the 2017 and 2019 survey, the data were identified by visit type (as 1st, 2nd, 3rd and 4+ ANC visits).
were initiated on ART before pregnancy was reported. The PMTCT cascade analysis was presented in stratified group by age and province. Estimates were reported with 95% CI.

The two pregnancy intention questions were classified into the following three categories: (1) in both questions the pregnancy was reported as ‘unintended’ 2) in both questions the pregnancy was reported as intended and 3) ‘ambivalent (undecided)’ which included responses where one response indicated the pregnancy was intended and the other response did not. Table 2 shows the distribution of responses for the two London Measure of Unplanned Pregnancy (LMUP) questions and the classification of responses. The prevalence of unintended pregnancy was presented in stratified group by age and province.

Table 2: London Measure of Unplanned Pregnancy (LMUP) scoring applied in the Antenatal HIV Sentinel Survey pregnancy intention questions, 2019.

<table>
<thead>
<tr>
<th>Before I became pregnant**</th>
<th>Just before I (mother) became pregnant*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I intended to become pregnant</td>
</tr>
<tr>
<td>The father of the child and I (mother) had agreed that we would like me to be pregnant</td>
<td>Both responses indicate intended (35.9%)</td>
</tr>
<tr>
<td>The father of the child and I (mother) had discussed having children together but hadn’t agreed for me to be pregnant</td>
<td>One response indicated intended (2.7%)</td>
</tr>
<tr>
<td>We never discussed having child(ren) together</td>
<td>One response indicated intended (2.0%)</td>
</tr>
</tbody>
</table>

* The percentages in bracket shows the weighted distribution of participants’ response to the two LMUP questions. **Dark grey: intended pregnancy; light grey: ambivalent about pregnancy; white: unintended pregnancy.

Early ANC attendance was defined as attendance of ANC at or before 12 weeks of pregnancy per the World Health Organization (WHO) recommendation. This survey also looked at attendance of ANC before 20 weeks as this definition is still being used in the NDoH annual reports despite the guideline change [18]. For syphilis reporting in this survey, the percentage of women who received maternal syphilis screening during ANC, the proportion who were positive for syphilis (syphilis prevalence), and the proportion positive who received treatment for syphilis were reported.
Each analysis was done using complete observations, excluding individuals with missing values for the relevant variables. The non-response rate was low (≤5%) for majority of the variables. Seven variables had >5% missing values, which were participant age (7.6%), HIV rapid test result (9.7%), pregnancy intention (6.2%), gestational age at booking (6%) visit type (5.5%), syphilis treatment (8.1%), and type of syphilis treatment received (10.7%). For participant age, a sub-sample of the missing age data was retrieved from patients’ files and the retrieved data were found to have the same age distribution as the rest of age data captured from data collection forms, confirming that the exclusion of missing age data from this analysis does not introduce bias. For routine rapid HIV test, EIA test showed participants with missing rapid test data had similar HIV prevalence as those with complete rapid HIV test result. For syphilis screening, syphilis result and treatment, the distribution of the missing data did not vary by province, age group or HIV status, suggesting random distribution of missing data for these variables. The demographic and clinical characteristics of participants whose samples were rejected were compared to those whose samples were processed to assess potential bias introduced due to the exclusion of participants with rejected samples.

2.10. Ethical considerations

Participation in the survey was voluntary, requiring written informed consent. To protect the confidentiality of participants’ information, the data collection form and the blood specimens were submitted without patient identifiers. Participants could withdraw from the study at any time and this did not influence their treatment. Participants were not compensated for their participation. Ethical approval was obtained from the University of the Witwatersrand Human Research Ethics Committee (Medical), and the nine provincial health research ethics committees. The study protocol was reviewed in accordance with the CDC human research protection procedures.

2.11. Scope of the report

This report presents data on HIV prevalence, the coverage of the first two UNAIDS 90-90-90 targets among pregnant women during and before pregnancy, the prevalence of unplanned pregnancy, early attendance of ANC, and the coverage of maternal syphilis screening and treatment. The main report presents the data at national and provincial level. The district level data are presented under annexure 4.
Chapter 3: Results

3.1. Flow chart of participants included in the analysis

In total, 41 598 participants were interviewed (Figure 1). Thirty-nine (0.1%) participants fell out of the age range (15–49 years) for inclusion in the study; 220 (0.5%) participants were missing their HIV test results or interview data, 50 (0.1%) refused to participate in the survey and 4 015 (9.7%) had their blood specimens rejected (60.9% of specimen rejections were due to haemolysis). Of the remaining 37 274 (89.6%) specimens processed, 158 (0.4%) were excluded for discrepant or equivocal results. A total of 37 116 (89.2%) participants were included in the final sample for analysis.

The breakdown of specimen rejections by province was as follows: of the 4 015 specimen rejections, 29.3% of specimen rejections were in KwaZulu-Natal; 18.7% in Gauteng; 13.0% in North West; 11.1% in Mpumalanga; 10.9% in Limpopo; 5.5% in Eastern Cape; 5.3% in Western Cape; 3.5% in Free State; and 2.7% in Northern Cape. The rejected samples did not substantially vary by demographic and clinical characteristics such as age, marital status, visit type and HIV status. Delay in transportation of specimens, breakdown in cold chain during transportation and high workload at the designated laboratories contributed to the haemolysis of samples.

All percentages are based on the total number of women interviewed; all percentages are unweighted

Figure 1: Flow chart of observations excluded from the analysis, in the 2019 Antenatal HIV Sentinel Survey, South Africa
3.1.1. Sample size realization at national and provincial level

At the national level, 103% of the planned sample size was achieved (Table 3). All provinces achieved at least 95% of their target. Sample size achievement was also high at the district and the clinic levels. All districts and 90% of clinics achieved at least 80% of their sample size. Two clinics – one in Eastern Cape and one in Western Cape – did not participate in the survey due to temporary closure. The sample size for these clinics was collected from the nearest sentinel site where the service is shifted to for the clients of the closed clinics.

Table 3: Sample size realization by province, Antenatal HIV Sentinel Survey, South Africa, 2015–2019

<table>
<thead>
<tr>
<th>Province</th>
<th>2015 Distribution of sample size achieved by province</th>
<th>2017 Distribution of sample size achieved by province</th>
<th>2019 Distribution of sample size achieved by province</th>
<th>2019 Planned sample size</th>
<th>2019 Sample size realization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Eastern Cape</td>
<td>4 168</td>
<td>11.5</td>
<td>4 040</td>
<td>12.3</td>
<td>5 692</td>
</tr>
<tr>
<td>Free State</td>
<td>2 349</td>
<td>6.5</td>
<td>2 734</td>
<td>8.4</td>
<td>2 851</td>
</tr>
<tr>
<td>Gauteng</td>
<td>6 512</td>
<td>18.0</td>
<td>4 844</td>
<td>14.8</td>
<td>5 375</td>
</tr>
<tr>
<td>KwaZulu-Natal</td>
<td>6 819</td>
<td>18.9</td>
<td>8 242</td>
<td>25.2</td>
<td>8 430</td>
</tr>
<tr>
<td>Limpopo</td>
<td>3 482</td>
<td>9.7</td>
<td>2 647</td>
<td>8.1</td>
<td>3 053</td>
</tr>
<tr>
<td>Mpumalanga</td>
<td>2 162</td>
<td>6.0</td>
<td>2 870</td>
<td>8.8</td>
<td>3 186</td>
</tr>
<tr>
<td>North West</td>
<td>1 880</td>
<td>5.2</td>
<td>2 256</td>
<td>6.9</td>
<td>2 901</td>
</tr>
<tr>
<td>Northern Cape</td>
<td>1 238</td>
<td>3.4</td>
<td>1 512</td>
<td>4.6</td>
<td>1 685</td>
</tr>
<tr>
<td>Western Cape</td>
<td>7 517</td>
<td>20.8</td>
<td>3 571</td>
<td>10.9</td>
<td>3 943</td>
</tr>
<tr>
<td>Total</td>
<td>36 127</td>
<td>100</td>
<td>32 716</td>
<td>100</td>
<td>37 116</td>
</tr>
</tbody>
</table>

All percentages are unweighted

3.2. Characteristics of survey participants

The majority of participants were Black African (88.3%) and had attended at least secondary school (88.1%). Just under a fifth (17.4%) of participants were married to the father of the child, 26.4% were living together with the father of the child, 52.9% were in a non-cohabiting relationship with the father of the child and 3.3% had no relationship with the father of child at the time of the survey. Just under one-third of participants (31.7%) reported that the current pregnancy was their first. The median gestational age of participants (at the time of the survey) was 16.0 weeks (IQR: 10.0–21.0 weeks) for first-ANC-visit attendees and 30.0 weeks (IQR: 24.0–34.0 weeks) for follow-up visit attendees. At provincial level, the percentage of women in a non-cohabiting relationship significantly varied ranging between 37.8% in Western Cape to 70.1% in KwaZulu-Natal. KwaZulu-Natal had the lowest percentage of married women at 9.6% while Western Cape had the highest percentage of married women at 25.6%. More than 85.0% of participants were Black African in seven of the nine provinces. In two provinces – Northern Cape and Western Cape – 52.4% and 41.5% respectively were Black African and
46.4% and 55.6% of participants respectively were Coloured. Distribution of other characteristics such as education, age and gravidity did not vary substantially by province. Demographic characteristics also did not vary substantially by visit type.

The median age of participants was 26 years (IQR: 22–31 years). The proportion of adolescent (15–19 years) pregnant women participating in the survey declined by 1.2% points between 2017 and 2019 (Table 4). This declining trend in adolescent women participating in the survey was consistently observed since 2013.

Table 4: Distribution of survey participants by five-year age group, 2013–2019, Antenatal HIV Sentinel Survey, South Africa

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2017*</th>
<th>2019*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>15–19</td>
<td>5 735</td>
<td>17.5</td>
<td>5 400</td>
<td>16.8</td>
<td>5 587</td>
</tr>
<tr>
<td>20–24</td>
<td>9 901</td>
<td>30.2</td>
<td>9 548</td>
<td>29.6</td>
<td>10 518</td>
</tr>
<tr>
<td>25–29</td>
<td>8 289</td>
<td>25.3</td>
<td>8 125</td>
<td>25.2</td>
<td>9 416</td>
</tr>
<tr>
<td>30–34</td>
<td>5 396</td>
<td>16.4</td>
<td>5 469</td>
<td>17.0</td>
<td>6 455</td>
</tr>
<tr>
<td>35–39</td>
<td>2 662</td>
<td>8.1</td>
<td>2 788</td>
<td>8.6</td>
<td>3 218</td>
</tr>
<tr>
<td>40–44</td>
<td>768</td>
<td>2.3</td>
<td>830</td>
<td>2.6</td>
<td>871</td>
</tr>
<tr>
<td>45–49</td>
<td>62</td>
<td>0.2</td>
<td>55</td>
<td>0.2</td>
<td>62</td>
</tr>
<tr>
<td>Total</td>
<td>32 813</td>
<td>100</td>
<td>32 215</td>
<td>100</td>
<td>36 127</td>
</tr>
</tbody>
</table>

*Total excludes missing age data (in 2017 and 2019, age data were missing for 8.2% and 7.6% of participants respectively). All percentages are unweighted.

Between 2017 and 2019, the number of first-ANC-visit attendees participating in the survey declined (37.7% in 2017 vs 30.1% in 2019) whereas the number of follow-up visit attendees (60.8% in 2017 vs 64.4% in 2019) and those whose visit type was not documented (1.5% in 2017 vs 5.5% in 2019) increased nationally, and across provinces (Table 5). There were more than 1 000 participants whose ANC visit type data did not tally with their response for gestational age at booking and their current gestational age – the visit type of these participants was set to missing which contributed to the increase in the number of participants whose visit type was not documented.

Table 5: Sample size distribution by province and visit type, 2019, Antenatal HIV Sentinel Survey, South Africa

<table>
<thead>
<tr>
<th>Province</th>
<th>First-ANC-visit</th>
<th>Follow-up ANC visit</th>
<th>Visit type not documented</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Eastern Cape</td>
<td>1 761</td>
<td>31.0</td>
<td>3 571</td>
<td>62.7</td>
</tr>
<tr>
<td>Free State</td>
<td>818</td>
<td>28.7</td>
<td>1 920</td>
<td>67.3</td>
</tr>
<tr>
<td>Gauteng</td>
<td>1 963</td>
<td>36.5</td>
<td>3 074</td>
<td>57.2</td>
</tr>
<tr>
<td>Kwa-Zulu Natal</td>
<td>1 914</td>
<td>22.7</td>
<td>6 109</td>
<td>72.5</td>
</tr>
<tr>
<td>Limpopo</td>
<td>1 061</td>
<td>34.8</td>
<td>1 854</td>
<td>60.7</td>
</tr>
</tbody>
</table>
3.3. National HIV prevalence

The overall HIV prevalence at national level was 30.0% (95% CI: 29.4%–30.6%) (Figure 2). This figure was 0.7% points lower than the prevalence reported in 2017 (30.7%, 95% CI: 30.1%–31.3%), although the difference was not statistically significant.

![HIV epidemic curve among antenatal women, South Africa, 1990–2019, Antenatal HIV Sentinel Survey](image)

Both first-ANC-visit attendees and follow-up visit attendees were included in 2015, 2017 and 2019 surveys

Figure 2: The HIV epidemic curve among antenatal women, South Africa, 1990–2019, Antenatal HIV Sentinel Survey

3.3.1. HIV prevalence by province

The highest overall HIV prevalence was in KwaZulu-Natal (40.9%, 95% CI: 39.6%–42.3%) followed by Eastern Cape (36.5%, 95% CI: 35.2%–37.9%) (Figure 3). KwaZulu-Natal has reported the highest HIV prevalence nationally at least for the last 5 years. The lowest overall HIV prevalence was in Western Cape at 17.9% (95% CI: 16.2%–19.7%). Nationally and in three provinces (Gauteng, Limpopo, Mpumalanga) participants attending follow-up ANC visits had significantly higher HIV prevalence (P value <0.01) compared to participants attending first-ANC-visit. This result was consistent with the 2017 survey result which also showed higher HIV prevalence among follow-up visit attendees compared to first-ANC-visit attendees particularly in Gauteng, Mpumalanga, and KwaZulu-Natal.
The prevalence in EC is 36.9% for both first-ANC-visit and follow-up ANC visit attendees; those who has not reported their visit type had lower prevalence (31.2%, n=2 033), which is why the overall prevalence is lower than the prevalence among first-ANC-visit and follow-up ANC visit attendees.

Figure 3: HIV prevalence among first-ANC visit attendees, follow-up ANC visit attendees and overall by province, in the 2019 Antenatal HIV Sentinel Survey, South Africa

3.3.1.1. HIV prevalence trends by province

Overall data (among both first antenatal and follow-up antenatal visit attendees)

In the overall data (i.e. data that included both first-ANC and follow-up ANC visit attendees), between 2017 and 2019, the highest decline in HIV prevalence was observed in Gauteng (4.1% points) followed by Limpopo (3.7% points) and Mpumalanga (3.2% points) respectively, but none of these declines were statistically significant (Figure 4). The overall HIV prevalence increased by ≥2% points in Northern Cape, Eastern Cape, and Western Cape – these increases were not statistically significant.
Both first-ANC-visit attendees and follow-up visit attendees were included. HIV prevalence decline (or increase) of ≥2%/<2% refers to a drop (or increase) of HIV prevalence by 2% points.

EC: Eastern Cape; FS: Free State; GA: Gauteng; KZN: KwaZulu-Natal; LP: Limpopo; MP: Mpumalanga; NW: North West; NC: Northern Cape; WC: Western Cape; SA: South Africa

95% CI for the 2019 prevalence: EC: 35.2%−37.9%; FS: 31.3%−34.3%; GA: 26.8%−29.4%; KZN: 39.6%−42.3%; LP: 18.4%−21.2%; MP: 32.4%−35.9%; NC: 18.3%−22.2%; NW: 25.2%−28.7%; WC: 16.2%−19.7%

Figure 4: Overall HIV prevalence (2015–2019) and change in provincial HIV prevalence estimates (2017–2019), Antenatal HIV Sentinel Survey, South Africa

Among first antenatal visit attendees only

Among first-ANC-visit attendees, at the province level, there was no statistically significant trend in HIV prevalence between 2012 and 2019 in seven of the nine provinces (Figure 5). In Eastern Cape, the prevalence increased significantly between 2012 and 2019. Mpumalanga continued to show declining trend in prevalence, but the decline was not statistically significant. In KwaZulu-Natal, in 2017, a significant decline in HIV prevalence was observed, but the prevalence has increased by 1.2% points in 2019.
3.3.2. HIV prevalence trend by age

HIV prevalence among the 15–24 years age group continued to show steady decline among both the 15–19 years and the 20–24 years age groups, with prevalence declining from 11.2% to 10.3% (P value = 0.07) and from 21.8% to 19.4% (P value <0.01) among the 15–19 years and 20–24 years age groups respectively between 2017 and 2019 (Figure 6).
HIV prevalence among first-ANC-visit attendees in the age groups 15–24 years and 20–24 years also showed consistent but modest statistically significant decline between 2014 and 2019 (Figure 7).

Figure 7: National HIV prevalence trend by age group among first-ANC-visit attendees, 2012–2019, Antenatal HIV Sentinel Survey, South Africa

3.3.3. HIV prevalence by district

The highest HIV prevalence was reported in Ugu district at 44.2% (95% CI: 39.0%–49.5%). Seven out of ten districts with the highest prevalence were in KwaZulu-Natal. The other 3 were in Eastern Cape (Chris Hani and Buffalo City) and Mpumalanga (Gert Sebande) (Figure 8). The lowest prevalence was in Central Karoo at 7.2% (95% CI: 4.9%–10.5%). The highest decline in HIV prevalence between 2017 and 2019 was in Waterberg (Limpopo) and uMzinyathi (KwaZulu-Natal) – these changes were both statistically significant. In Waterberg prevalence reduced from 35.8% (95% CI: 33.0%–38.8%) to 24.7% (95% CI: 22.1%–27.5%), while in uMzinyathi prevalence reduced from 41.7% (95% CI: 36.9%–46.6%) to 33.6% (95% CI: 28.8%–38.9%) (P value=0.03) (Figure 9). More detailed analysis of the district data is presented in annexure 4.
Redline shows national prevalence. Both first-ANC-visit attendees and follow-up visit attendees were included.

Figure 8: HIV prevalence among pregnant women by district, 2019, Antenatal HIV Sentinel Survey, South Africa
Both first-ANC-visit attendees and follow-up visit attendees were included.

Figure 9: Change in HIV prevalence from 2017 to 2019 by district, Antenatal HIV Sentinel Survey, South Africa.
3.4. PMTCT cascade – the first and second 90

Based on medical record review data, HIV testing was offered to 99.8% (33 440/33 508) of ANC attendees as part of routine care and almost all (99.9%, 33 427) either accepted the offer or already knew their HIV-positive status. Nationally, of 11 321 participants found to be HIV-positive by EIA test, 97.6% (11 046) already knew their HIV-positive status at the time of the survey (Figure 10). Of those who knew their HIV-positive status, excluding 355 participants whose treatment status was not reported, 96.0% (10 271) were initiated on ART at the time of the survey. Both knowledge of HIV status and ART initiation improved between 2017 and 2019 in most provinces.

![Graph A: Knowledge of HIV-positive status by province, 2017 and 2019](image)

The denominator was the total number of women tested positive by EIA test. Missing data excluded.

EC: Eastern Cape; FS: Free State; GA: Gauteng; KZN: KwaZulu-Natal; LP: Limpopo; MP: Mpumalanga; NW: North West; NC: Northern Cape; WC: Western Cape

![Graph B: ART initiation by province, 2017 and 2019](image)

The denominator was the total number of women who knew their HIV-positive status. Missing data excluded. ART: Antiretroviral therapy.

Figure 10: Knowledge of HIV-positive status (A) and ART initiation (B) by province, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, South Africa

3.5. Knowledge of HIV-positive status and ART initiation before pregnancy

Nationally, of 10 778 EIA positive participants whose timing of (HIV) diagnosis was reported, 72.7% (7 912) knew their HIV-positive status before pregnancy (Figure 11). Of those who knew their HIV-positive status before pregnancy and whose treatment status was reported (7 735), 93.3% (7 207) were initiated on ART before pregnancy. This translates to 66.2% of all EIA positive participants who had already initiated ART before pregnancy. Knowledge of HIV-positive status before pregnancy significantly improved by 19.6% between 2017 (60.8%, 95% CI: 59.9%–61.7%) and 2019 (72.7%, 95% CI: 71.9%–73.4%).

3 608 (9.7%) missing responses excluded when calculating percentage

4 95% CI: 92.8%–93.7%
The denominator for knowledge of HIV-positive status before pregnancy was EIA positives. Missing data excluded.

ART: antiretroviral therapy. The denominator for ART initiation before pregnancy was the number of HIV-positive women who were aware of their HIV-positive status before pregnancy. Missing data excluded.

EC: Eastern Cape; FS: Free State; GA: Gauteng; KZN: KwaZulu-Natal; LP: Limpopo; MP: Mpumalanga; NW: North West; NC: Northern Cape; WC: Western Cape; SA: South Africa

Figure 11: Knowledge of HIV-positive status (A) and ART initiation (B) before pregnancy by province, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, South Africa

As in the 2017 survey, in 2019, knowledge of HIV status before pregnancy was significantly lower among younger women (15–19 years and 20–24 years: 47.6% and 59.4%, respectively) compared to older women (35–49 years: 85.1%, P value <0.01) (Figure 12). However, there was an overall improvement across all age groups, in knowledge of HIV-positive status before pregnancy between 2017 and 2019. ART initiation did not significantly vary by age.
The denominator for knowledge of HIV-positive status before pregnancy was EIA positives. Missing data excluded.

ART: antiretroviral therapy. The denominator for ART initiation before pregnancy was the number of HIV-positive women who were aware of their HIV-positive status before pregnancy. Missing data excluded.

Figure 12: Knowledge of HIV-positive status (A) and ART initiation (B) before pregnancy by age group, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, South Africa

3.6. Pregnancy intention

More than half (51.6%) of the pregnancies in this study were unintended (i.e. in both LMUP questions the pregnancy was reported as unintended) (Figure 13). Just above a third (35.9%) of the pregnancies were intended (i.e. in both LMUP questions the pregnancy was reported as intended); while 12.5% of the pregnancies were either reported as intended in one LMUP question only or at least one response (to the LMUP questions) indicated the woman was undecided about having a baby prior to the current pregnancy. Adolescent girls (15–19 years) (76.3%, 95% CI: 74.9%–77.6%) and young women (20–24 years) (56.5%, 95% CI: 55.4%–57.6%) had higher prevalence of unintended pregnancy compared to older women (35–49 years) (45.2%, 95% CI: 43.9%–46.6%). Participants in a non-cohabiting relationship (64.3%, 95% CI: 63.4%–65.2%) and single women (76.0%, 95% CI: 73.9%–78.0%) had significantly higher prevalence of unintended pregnancy compared to participants who were married (27.0%, 95% CI: 26.0%–28.1%) or cohabiting with their partner (41.4%, 95% CI: 40.3%–42.5%).

![Graph A](image1.png)

A

![Graph B](image2.png)

B

<table>
<thead>
<tr>
<th>15–19</th>
<th>20–24</th>
<th>25–29</th>
<th>30–34</th>
<th>35–49</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

The denominator for knowledge of HIV-positive status before pregnancy was EIA positives. Missing data excluded.

ART: antiretroviral therapy. The denominator for ART initiation before pregnancy was the number of HIV-positive women who were aware of their HIV-positive status before pregnancy. Missing data excluded.
The categories were defined as follows: Intended: response to both LMUP questions indicated pregnancy was intended; Unintended: response to both questions indicated pregnancy was unintended; Ambivalent: intended by only one response or at least one response indicated the woman was undecided about having a baby.

Figure 13: Pregnancy intention by age group in the 2019 Antenatal HIV Sentinel Survey, South Africa

KwaZulu-Natal had the highest prevalence of unintended pregnancy at 60.6% (95% CI: 58.6%-62.5%). The lowest prevalence of unintended pregnancy was in Limpopo (43.1%) (Figure 14). There was no statistically significant difference in the prevalence of unintended pregnancy between HIV-negative (51.4%) and HIV-positive (52%) participants.

Figure 14: Unintended pregnancy by province, in the 2019 Antenatal HIV Sentinel Survey, South Africa

EC: Eastern Cape; FS: Free State; GA: Gauteng; KZN: KwaZulu-Natal; LP: Limpopo; MP: Mpumalanga; NW: North West; NC: Northern Cape; WC: Western Cape; SA: South Africa
3.7. Early ANC attendance

Only just above a third (35.5%) of participants attended their first-ANC-visit before or at 12 weeks of pregnancy as per the WHO recommendation (Figure 15). Majority of participants (58.9%) attended their first-ANC-visit in their second trimester, while a small percentage (5.6%) of participants attended their first-ANC-visit during the third trimester of their pregnancy.

More than two-thirds (70.1%, 95% CI: 69.5%–70.7%) of participants attended their first-ANC-visit before 20 weeks of pregnancy. The highest attendance of ANC before 20 weeks of pregnancy was in Western Cape at 76.9% and the lowest was in Eastern Cape at 65.6%. Attendance of ANC before 20 weeks was lower than the national average (70.1%) among women with high (≥4) gravidity (64.2%), single women (61.1%), participants with no education (60.6%) or primary education (66.2%), adolescent girls (63.8%) and women older than 40 years (63.3%). Attendance of ANC before 20 weeks of pregnancy was significantly lower among participants whose pregnancy was unintended (66.7%, 95% CI: 66.0%–67.4%) compared to participants whose pregnancy was intended (74.3%, 95% CI: 73.5%–75.2%). Attendance of ANC before 20 weeks was higher among those who knew their HIV-positive status before pregnancy (73.6%, 95% CI: 72.7%–74.6%) compared to participants newly diagnosed with HIV during pregnancy (69.7%, 95% CI: 68.4%–71.0%) and HIV-negative women (69.1%, 95% CI: 68.5%–69.8%).

Figure 15: Early attendance of antenatal care by province in the 2019 Antenatal HIV Sentinel Survey, South Africa
3.8. Maternal syphilis screening and treatment coverage

Maternal syphilis screening coverage was 96.4% at national level, representing a decline of 0.3% points in syphilis screening coverage from the level in 2017 (96.7%) (Figure 16). All provinces had greater than 90% syphilis screening coverage. Of those who had syphilis screening, 2.1% (95% CI: 2.0%–2.3%) were positive for syphilis, 79.4% were negative, 17.3% were awaiting result and 1.2% results were not in file. Syphilis screening coverage data were missing for 3.3% of participants. If we assumed that all missing responses indicated that the subjects did not receive the screening test, and include them as such in the denominator, the national coverage for syphilis screening drops to 93.1%.

Figure 16: Maternal syphilis screening coverage among antenatal women, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, South Africa

After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) among those who had syphilis test result, was 2.6% (95% CI: 2.4%–2.9%) (793) at national level (Figure 17). Compared to the prevalence of syphilis in 2015 (which was 2.0% based on laboratory testing), the current syphilis prevalence represents a 30% increase in prevalence between 2015 and 2019. The highest syphilis prevalence was in Eastern Cape at 3.8% (95% CI: 2.6%–5.4%) and the lowest was in Limpopo at 1.4% (95% CI: 1.0%–1.8%).
Figure 17: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, South Africa

Of 729 participants who were syphilis positive and whose syphilis treatment status was reported, 92.3% (671) received at least one dose of treatment for syphilis (Figure 18). Of those treated for syphilis and had type of treatment reported (599), 93.1% (553) were treated with at least one dose of Benzathine penicillin G (BPG) – these translates to 85.1% of all syphilis positive participants treated with one dose of BPG. Syphilis treatment data was missing for 8.1% of syphilis positive participants, and type of treatment data was missing for 10.7% of participants treated for syphilis; these missing data were excluded from the above analysis (i.e. given that there was no substantial difference in the distribution of missing data by province, HIV status and participants age, it was assumed that the data was missing at random). If it is assumed that all missing responses mean that the subjects did not receive treatment for syphilis, and as such include them in the denominator, the coverage of syphilis treatment and treatment with BPG drops from 92.3% to 85% and from 93.1% to 83.0% respectively.
The graph represents 'number of participants'. The percentages are calculated using the number in the previous bar as the denominator (i.e. of 729 syphilis positive participants, 92.3% were treated for syphilis, and of 671 participants treated for syphilis, 93.1% were treated with Benzathine Penicillin); 8.1% (64) of syphilis positive participants and 10.7% (72) participants treated for syphilis had not responded for the questions syphilis treatment and type of treatment (Benzathine Penicillin) respectively – these were excluded from the denominators for syphilis treatment and treatment with Benzathine Penicillin respectively. All percentages are weighted.

Figure 18: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, South Africa

Syphilis treatment coverage varied by province from a low of 61.5% (24/40) in Mpumalanga to a high of 97.6% (73/75) in Western Cape (missing data were excluded from the denominators of these estimates) (Figure 19).

Figure 19: Syphilis treatment coverage by province among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, South Africa

EC: Eastern Cape; FS: Free State; GA: Gauteng; KZN: KwaZulu-Natal; LP: Limpopo; MP: Mpumalanga; NW: North West; NC: Northern Cape; WC: Western Cape; SA: South Africa
Chapter 4: Conclusions and Recommendations

In this national survey, HIV prevalence among pregnant women has remained largely unchanged at around 30% since 2004. Encouraging progress has been observed in the number of HIV-positive women initiating ART before pregnancy, with two-thirds of HIV-positive women initiating treatment prior to their first-ANC-visit. Early ANC initiation was low across provinces with just above a third of women initiating ANC during their first trimester. Despite improved availability and access to modern methods of contraceptives in South Africa, the prevalence of unintended pregnancy was high. At the national level, the prevalence of syphilis (estimated using medical record review data) showed a 30% rise in the prevalence of syphilis from the level reported in 2015 (2% in 2015 vs 2.6% in current survey) – in the later (i.e. in 2015) syphilis status was ascertained using rapid plasma reagin (RPR) test performed on left over blood specimens collected from participants for the survey while in 2019, syphilis status was ascertained using data extracted from participants’ medical record.

The consistent declining trend in HIV prevalence among young women (15–24 years) is encouraging as incidence in this age group is traditionally high. However, given the large gender difference in HIV incidence and prevalence in this age group, solutions that extend beyond clinical health interventions are needed in order to address the additional gender-specific challenges [11, 12, 19]. Efforts to provide youth-friendly services may be compromised by low uptake of these services. A holistic approach to services provided, in addition to healthcare services, may reduce fear of stigmatization and increase demand and utilization of these services, thereby providing a platform for high-impact youth interventions that particularly promote testing. A positive healthcare experience during the vulnerable youthful period will additionally provide a positive frame of reference regarding healthcare services.

The interpretation of the provincial and national prevalence data is more complex as changes in HIV prevalence could be attributed to a combination of the following factors: HIV incidence, mortality, mobility between and within provinces, declining (or increasing) fertility among PLHIV, increasing coverage of ART (which reduces mortality among PLHIV), and the higher HIV prevalence among women ageing out of the 15–49 years age group which are replaced by younger women with much lower HIV prevalence ageing into the 15–49 year age group. Hence it is difficult to show direct correlation between HIV prevalence and new HIV infection.

The high prevalence of unintended pregnancy despite free access to contraceptive services in public health care facilities in South Africa is a great concern. This finding highlights the need to address key challenges and gaps that contribute to low uptake and ineffective use of contraceptives. Studies which assessed the level of knowledge on contraceptive methods show, most sexually active women in South Africa have knowledge of at least one contraceptive method [20, 21]. Despite the high knowledge of contraceptives, in 2016, 18% of sexually active women wanting to avoid pregnancy were not using any contraceptive method [22]. Low uptake of contraceptives is the most common cause of unintended pregnancy in up to 75% of unintended pregnancies in South Africa [20, 23]. Reasons cited for not using contraceptive methods included fear of side effects, fear of social disapproval, fear of infertility, believe that
occasional sex doesn’t lead to pregnancy, and lack of preparation in unintended sex [24-26]. In other African countries, community-based services are increasingly being used to address misconceptions and concerns about contraceptives within the community, along with provision of commonly used contraceptive methods (e.g. injectables, pills and condoms) at community level, which have been shown to significantly improve uptake of contraceptives [27, 28]. Health service related factors such as quality of care, staff capacity to provide adequate counselling, healthcare providers attitude towards HIV-positive and younger clients, limited contraceptive options, disruptions in contraceptive supplies (stock outs), and long waiting hours have also been reported as contributing factors for low uptake of contraceptives [21]. In addition, discontinuation, and incorrect and irregular use of contraceptives contribute to unintended pregnancy [21, 29-31].

Our finding of approximately half of the pregnancies being unintended was consistent with other studies [20, 32]. Data from the South African demographic and health survey (SADHS) reported 54% of all births between 2012 and 2016 were unintended [22, 32]. The high unintended pregnancy among adolescent girls (15–19 years) in this study could be attributable to both low knowledge of contraceptives and fear of using contraceptive methods due to parental disapproval, and male partners influence [21, 22, 33]. Among single women and women in a non-living together relationship, lack of inter-partner communication has been reported as one of the contributing factor for low contraceptive use [21, 29].

In this study, although there was no difference in the prevalence of unintended pregnancy between HIV-positive and HIV-negative women, about half of HIV-positive women who had been receiving ART before pregnancy from adult clinics reported their pregnancy was unintended. In South Africa, although contraceptive services are integrated with HIV services, the models of integration differ, with some healthcare providers providing both HIV and contraceptive services in one location while others provide referral based services [30, 34]. Provision of both HIV and contraceptive services by one healthcare provider could promote contraceptive use among PLHIV [30, 34].

Although the recommendation by WHO [35] and the NDoH [36] is for women to initiate ANC as soon as they suspect pregnancy or the latest by 12 weeks of their pregnancy, about two-thirds of participants in this study had not initiated ANC by 12 weeks of their pregnancy. Attendance of ANC in the first trimester of pregnancy has a vital role for early detection and treatment of HIV infection and other maternal conditions whose management improves maternal and neonatal outcomes [35]. Pregnant women who delay ART initiation due to late ANC attendance are likely to be virally unsuppressed at delivery which increases the risk of mother-to-child transmission (MTCT) [37]. It is also crucial for women to attend ANC in the first trimester of their pregnancy as various critical screenings tests (e.g. tests for iron deficiency, lifestyle diseases, sexually transmitted diseases and genetic and congenital diseases) are performed in the early stage (first trimester) of pregnancy to identify and appropriately manage risk factors that lead to poor maternal and child health outcomes [36].

In the literature, both client-related and health systems-related factors have been reported as barriers for early ANC initiation. In most African countries, women tend to delay ANC visit due to fear of miscarriage, contemplation of termination of pregnancy, fear of ANC HIV test
outcome, and due to financial reasons (e.g. transportation cost) [38, 39]. Some women also underestimate the importance of early ANC attendance due to lack of knowledge [38]. Health systems-related barriers to early ANC initiation include long waiting hours, overcrowding of public health facilities, and healthcare provider-client relationship [38, 40]. In our survey, even though attendance of ANC before 12 weeks was low, majority (more than two-thirds) of women attended their first-ANC-visit before the 5th month of their pregnancy, highlighting women’s preference (for cultural and other reasons) to attend ANC after the first trimester. In this survey, women who had 4 or more children were less likely to initiate ANC early, which may be due to presumed knowledge/experience about pregnancy and underestimation of the importance of early ANC attendance [41]. In a stratified analysis, we found early ANC initiation to be high among women who were married and women with higher educational level. The literature shows women who are underage or unmarried fear stigma to visit ANC facilities as it is not acceptable in the society to be pregnant at a young age especially without being married [38]. In addition, women who have unintended pregnancy are more likely to delay ANC initiation [42].

Compared to the SADHS and District Health Information System (DHIS) reports, our estimate for early ANC attendance was somewhat lower. In 2016, the SADHS estimated 47% of pregnant women initiated first ANC before 12 weeks of pregnancy which was higher by about 12% from our estimate for early ANC attendance [22]. The difference in the estimate between the two studies could be due to recall bias and social desirability bias in the SADHS survey which used self-reported and historical data to estimate early ANC attendance. Our estimate of 70% ANC attendance before 20 weeks was also lower compared to routine DHIS data which reported 79.8% attendance of ANC before 20 weeks for the 2018/19 financial year [18]. While DHIS reports data from all clinics, the antenatal survey is conducted in selected sentinel sites which are representative of clinics providing ANC services to more than 20 antenatal clients per month. The exclusion of smaller clinics in the antenatal survey could be a possible explanation for the difference in the estimate of early ANC attendance between DHIS and the antenatal survey.

The suggested increase in maternal syphilis sero-prevalence from 2.0% in 2015 to 2.6% in 2019 is concerning, particularly in the context of the severe negative pregnancy and neonatal outcomes associated with maternal syphilis and the significant increase in congenital syphilis cases notified in the same year. South Africa’s screening protocol requires syphilis screening at the booking visit to be repeated at 32–36 weeks gestation, if the first test was negative [43]. The current study did not include the rate of coverage for the repeat third trimester screening. Syphilis sero-prevalence in the 2019 survey represents pregnant women majority of whom tested positive (for RPR) at booking. Rapid plasma reagin (RPR) positivity is a marker of active or recent syphilis infection. In the 2015 survey, the prevalence was determined from an RPR test on a blood specimen collected at enrolment among women who were a mix of first visit attendees and follow up visit attendees. Given that some women may acquire syphilis in pregnancy, the estimate at booking could have been lower than the 2% reported in the 2015 survey. This means there was likely a greater increase than the 30% increase observed between the two surveys. Currently syphilis screening is primarily laboratory-based. In this study, 17.3% of participants (>80% of which were first-ANC-visit attendees) were awaiting results and an additional 1.2% of participants results were not recorded in their medical records.
This presents a challenge to timely treatment initiation and the failure of patients to return for treatment. Point-of-Care (rapid) tests have demonstrated an increase in screening and treatment coverage in a variety of settings globally, including a study conducted in South Africa, whilst not creating any additional workload for Healthcare Workers [44, 45].

The increase in maternal syphilis is plausible and consistent with other data sources on syphilis in the general population, maternal syphilis and congenital syphilis. A Spectrum modelling exercise conducted for South Africa in 2018 and reporting data up to 2017 showed that although syphilis rates had declined throughout the early 2000s, incidence had plateaued from about 2010 [46]. In 2017–2018, the country experienced shortages in BPG, the drug of choice for treatment of syphilis during pregnancy. Although facilities were instructed to prioritise pregnant women for treatment with BPG, some partners may have gone untreated leading to re-infection later in pregnancy [47]. Lastly since the revitalisation of the Notifiable Medical Conditions (NMC) surveillance programme in July 2017, there has been a steady increase in the number of congenital syphilis notifications. In 2018, South Africa reported 159 cases of congenital syphilis compared to 362 in 2019 (unpublished report). While this increase could have been due to increases in notifications, the parallel increases in number of RPR positive tests conducted on infants or children under the age of two years suggest an increase in syphilis exposure and or number of infants being investigated for congenital syphilis in the country. In addition, the provincial distribution of congenital syphilis cases closely matches the maternal sero-prevalence rates reported. From 2017–2019, about 90% of notifications were from KwaZulu-Natal, Gauteng, Western Cape, Eastern Cape, and Free State. While this may be due to better notification in these provinces, it is also a reflection of increased burden (Congenital syphilis surveillance report April 2020, unpublished).

The 95-95-95 target for elimination of MTCT (eMTCT) syphilis requires that 95% of all pregnant women attend ANC, 95% of all pregnant women are tested for syphilis and that 95% of all syphilis positive women be treated with at least one dose of BPG [48]. Although South Africa has met the second eMTCT syphilis 95% target, as per the findings of this survey, additional focus is needed on retesting at 32 weeks for women who were negative at booking. The observed 92% coverage of the first dose of treatment is higher than expected given the reported BPG shortages as well as lower coverage of treatment from DHIS clinical sentinel sites (DHIS clinical sentinel site report, unpublished report). Supplies of BPG could have improved towards the end of 2019 when the survey was conducted, or ANC sentinel sites are better performing than the clinical sentinel sites. Also, while this report measured coverage for the first dose of BPG treatment, South African guidelines require that syphilis positive pregnant women be treated with three doses of BPG (each one week apart). Data from DHIS clinical sentinel sites show that coverage for the second and third doses is substantially lower than for the first (DHIS clinical sentinel site report, unpublished report). More work is also needed to improve coverage of treatment especially in Mpumalanga, Free State and Limpopo provinces.

The survey had some limitations. Pregnant women younger than 15 years or older than 49 years were not included in the survey. The survey was restricted to public facilities, which may limit the generalizability of the findings to the overall population, especially to high-income groups.
Compared to previous surveys, missing data and inconsistent reporting has increased in the 2019 survey. The antenatal survey is collected by NDoH staff/nurses providing ANC services. In the 2019 survey several new questions were added, and the layout of the data collection form was designed in a different way from that used in previous surveys in order to provide space for the new questions introduced. Despite these changes, limited supervision and monitoring support was provided at site level for nurses collecting the data. The district team designated to coordinate and supervise survey implementation had other conflicting commitments/responsibilities, which resulted in inadequate provision of support to the survey. Missing or inconsistent data was higher for the new questions introduced in the 2019 survey. The team has assessed the potential bias missing data may have introduced by triangulating data with specimen data (e.g. for HIV status) and by extracting the sub-sample of missing data (where possible). The result showed for most variables the missing data was missing at random. Unintended pregnancy was determined by using two questions from the LMUP rather than the full validated measure – because our study used only two LMUP questions, our estimates may not be directly comparable with findings from other studies that used all six LMUP questions.

The percentage of specimens rejected was higher in the 2019 survey compared to previous surveys; however, no substantial difference was observed in the demographic characteristics of participants excluded from the analysis due to rejections. Sample size realization in the 2019 survey was higher compared to previous surveys (e.g. in 2017 sample size realization at province level ranged from 74.1% in North West to 100.4% in Free State as compared to >90% sample size realization across all provinces in 2019). The increase in sample size realization in 2019 was because of improved tracking of the study progress at clinic level. Clinics also collected extra samples to compensate for samples that may have haemolysed during transportation and to assist clinics that were remaining behind in sample size realization. To adjust for variability in sample size achievement between districts, in the 2019 survey, all analyses were weighted for sample size realization.

The following recommendations stemmed out of the 2019 survey, though they draw from findings of other studies. These recommendations are intended to give programmatic direction to existing initiatives undertaken by the NDoH, and partner Departments, as well as to guide the design and implementation of new initiatives. In general, the focus is on the provision of high-quality, integrated health services for Sexual and Reproductive Health and Rights (SRHR) and the design of tailored, innovative initiatives designed to achieve a reduction in infections of HIV and syphilis. The recommendations are as follows:

- Despite the promising reduction in prevalence of HIV amongst young women (15–24 years), cognizance of the large gender disparities in incidence and prevalence of HIV against young women reported in the literature, as well as the high rate of unintended pregnancy among the same age group, indicate that this age group continues to need quality SRHR services delivered in a quality and youth friendly manner. This may be accomplished through both optimizing access and generating demand for appropriate services:
Optimize Access:

- Provision of comprehensive quality and youth-friendly sexual and reproductive health services continues to be a priority. Designated Adolescent and Youth Zones at facilities with welcoming environments served by appropriately trained Healthcare Workers is the gold standard. However, additional research must be done into Adolescent and Youth Zones to identify specific strategies that have been successful and can be scaled to other Youth Zones. Once initiated, the effectiveness of the Adolescent and Youth zones must be monitored to ensure services provided meet the requisite standards and are continually improving to address the changing needs of youth.

- HIV self-testing could be explored as an alternative option to increase uptake of HIV testing among adolescent girls and young women who may not access health facility-based services due to stigma.

- Innovative strategies are needed in order to increase uptake of contraceptives and dual protection, particularly amongst young women and men. This may include the expansion of the provision of oral contraceptives through the chronic medicines dispensing and distribution (CCMDD) service, the development of private-public-partnerships that facilitate the provision of contraceptive services and dual protection through private pharmacies as well as a strong emphasis on providing updated information on available contraceptive choices so women and couples are able to find an option that suits their individual needs.

- In collaboration with the Departments of Basic Education, Higher Education and Social Development, strategies to strengthen school based sexual and reproductive health education could be developed. These strategies could then be implemented through school nurses and clinical services at tertiary institutions, with focus areas including increasing knowledge about contraceptives and dual protection, provision of contraceptive services, and promoting healthy sexual behavioural choices to ultimately reduce unintended pregnancies and sexually transmitted infections (STI) among adolescent girls, young women and men.

- Increasing contraceptive choices available at primary health care facilities, provision of quality counselling regarding the various options, and ensuring continued availability of contraceptives continue to be a priority. Specifically, efforts could be made to increase the contraceptive options included on the Essential Medicines List and thereby increase the options available at facility. Also, fostering continued close engagement with suppliers may allow supply disruptions to be identified and addressed before causing shortages at the facility level.

Generate Demand:

- Implementing a national educational media campaign on contraceptive options including dual protection, availability, and the importance of early initiation of ANC may assist with demand generation. This could include previously used modes such as radio stations, social media, school services, and local television shows but could be deployed consistently in order to maximise the benefits. Establishment of a health-related media team to co-ordinate distribution of accurate health information through various digital platforms may ensure continuity of efforts.

- Education on SRHR should be expanded to actively include men. In order to optimize reach and scale, this could be undertaken in non-healthcare settings, such as adverts at sports and recreational events, seminars offered at places of employment and universities,
and religious facilities. A model for expansion of SRHR initiatives would be most effective if developed in collaboration with the Department of Basic Education, Department of Higher Education, and Department for Social Development, Department of Sports, Arts, Culture and Recreation. In addition, a structured intervention made available and focused towards male-friendly health facilities such as medical male circumcision (MMC) facilities could improve demand.

Further Recommendations:

- Strengthening the integration of HIV treatment programmes with contraceptive and STI services is important in order to provide comprehensive services to PLHIV accessing HIV services. Lessons can be learnt from areas where this has been completed successfully already and may be applied nationwide. The planned comprehensive training for the 2019 SRHR policy and guidelines provides a good opportunity to further this objective.

- Combination prevention services could be expanded to simultaneously address socio-economic drivers of the HIV epidemic (such as low education level and inequity in access to schooling) that contribute to low uptake of HIV and reproductive health services.

- District-level analyses are needed to determine the districts with highest incidence of HIV and evaluate the health prevention services available in these districts as well as the factors affecting availability and uptake of the services. Further analyses may determine the operational interventions required in addressing this challenge. Additional monitoring beyond the ANC population, could determine if the observed pattern of increasing syphilis prevalence yet stable or decreasing HIV prevalence exist, particularly amongst key populations and contraceptives service clients. Voluntary MMC services could also be explored as a platform for STI surveillance, especially in areas where the programme targets men at high risk of HIV/STI.

- A shift away from syndromic management and towards alternatives, such as general or key population testing, could be considered as a potential remedy to this pattern.

- The national introduction of Dual HIV/syphilis rapid diagnostic testing for ANC services may assist with clinical level diagnostics and could be expedited. A pilot implementation study is needed to identify and mitigate challenges and inform national roll-out, given quality assurance concerns in the national HIV testing programme, the high proportion of PLHIV already on ART at booking and the variable HIV rapid test performance among people on ART. Given the high HIV prevalence and increasing awareness of HIV status, algorithms directing the correct selection of rapid tests may be developed.

- With regards to treatment, BPG is the only treatment recommended for preventing vertical transmission of syphilis. It is therefore imperative that any challenges delaying/preventing the registration of BPG in South Africa as well as procurement challenges, be resolved in partnership with SAHPRA, the Affordable Medicines Directorate of the NDoH and all other stakeholders.

- Male circumcision and condom use as strategies for primary prevention of maternal and congenital syphilis warrant further focus for inclusion in existing prevention strategies.

- To improve data quality in the antenatal survey, there is a need to have a project management team at province level that oversees and coordinates activities for the survey including provincial and laboratory activities, onsite support visits and supervision.
References

17. StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.

35. WHO recommendations on antenatal care for a positive pregnancy experience. World Health Organization [cited 11/05/2020]. Available from:

Annexure 1: Data collection form
P. DEMOGRAPHIC AND CLINICAL INFORMATION

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1. How old is the father of this baby?</td>
<td>Yes, No, Don't know</td>
</tr>
<tr>
<td>F2. Is the father of this baby 5 years older than you?</td>
<td></td>
</tr>
<tr>
<td>F3. What is your highest completed level of education?</td>
<td>None, Primary, Secondary, Tertiary</td>
</tr>
<tr>
<td>F4. How many times have you been pregnant including this one?</td>
<td>1 (one), 2 (two), 3 (three), 4 (four) and above</td>
</tr>
<tr>
<td>F5. How many live babies have you delivered?</td>
<td>0 (zero), 1 (one), 2 (two), 3 (three)</td>
</tr>
<tr>
<td>F6. Gestational age at today's visit (in weeks) (review medical record)</td>
<td></td>
</tr>
<tr>
<td>F7. What trimester is the participant currently (review medical record)?</td>
<td></td>
</tr>
<tr>
<td>F8. Gestational age at first antenatal care booking (in weeks) (review medical record)</td>
<td>1st, 2nd, 3rd</td>
</tr>
<tr>
<td>F10. Just before I became pregnant</td>
<td>I intended to get pregnant, My intentions kept changing, I didn't intend to get pregnant</td>
</tr>
<tr>
<td>F11. Before I became pregnant</td>
<td></td>
</tr>
</tbody>
</table>

G. HIV STATUS

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1. What was the participant's HIV status in the last pregnancy prior to this?</td>
<td>Positive, Negative, Unknown, Not applicable (this is her first pregnancy)</td>
</tr>
<tr>
<td>G2. What is the participant's latest HIV status from her medical records?</td>
<td>No HIV Status recorded, Participant refused testing, Negative from test done in previous ANC visit, Negative from test done today</td>
</tr>
<tr>
<td>G3. If HIV positive, when was she first diagnosed HIV positive?</td>
<td>Positive before this pregnancy, Tested positive during previous antenatal visit, Tested positive today</td>
</tr>
<tr>
<td>G4. If reported HIV positive ask this question:</td>
<td></td>
</tr>
<tr>
<td>Has the participant ever taken ARVs? If yes, when did she start:</td>
<td></td>
</tr>
<tr>
<td>H1. Is there a recent negative viral load (VL) test done for the participant during this pregnancy?</td>
<td>Yes, No, Not due for VL</td>
</tr>
<tr>
<td>H2. If VL is done, is the VL test result documented?</td>
<td>Yes, No</td>
</tr>
<tr>
<td>H3. If VL is documented, what is the most recent VL reported during this pregnancy?</td>
<td><40 copies/ml, 50 - 999 copies/ml, 1000 copies/ml</td>
</tr>
<tr>
<td>I. SYphilIS TESTING</td>
<td></td>
</tr>
<tr>
<td>I1. Is there a record showing syphilis test was done for the participant during this pregnancy?</td>
<td>Yes, No</td>
</tr>
<tr>
<td>I2. If syphilis test was done, was the result?</td>
<td>Positive, Negative</td>
</tr>
<tr>
<td>I3. If result was positive, did patient receive treatment for syphilis?</td>
<td>Yes, No</td>
</tr>
<tr>
<td>I4. If she did receive treatment, was this benzathine penicillin (BZP)?</td>
<td>Yes, No</td>
</tr>
</tbody>
</table>

NATIONAL HIV SURVEILLANCE FOCAL PERSON CONTACT NUMBER: 084 855 7867
Information sheet for participating in the current survey

INTRODUCTION
Hello. I am Sr MuM:, a nurse working in the antenatal care unit of this clinic. I would like to find out if you are willing to participate in a study called "the Antenatal survey". This study is being supported by the National Institute for Communicable Diseases and the National Department of Health.

WHY AND HOW ARE WE DOING THIS STUDY?
We are asking 30, 015 pregnant women to take part in this study. They will come from all 9 provinces of South Africa. We are doing this study to find out how many pregnant women have either HIV or syphilis. Both HIV and syphilis are infections that can lead to serious negative influences on your and your baby's health. This study will help the government to know whether the money spent to prevent HIV and syphilis is having an effect and what more needs to be done. We are also doing this study to find out what care pregnant women get from the clinic: Did the pregnant women get HIV and syphilis tests during their antenatal visits? Did they get treatment for HIV and syphilis? They also need to know how much medicine is needed to treat pregnant women for HIV and syphilis. We will draw a sample of blood from you for HIV and syphilis tests. We will interview you and collect information from your medical record. Your answers and information from the medical record will be written in a form. We will send the blood and the form to the laboratory for testing.

BEING PART OF THE STUDY AND STOPPING THE STUDY
If you agree to take part in this study, we will first ask you questions. You do not have to answer all the questions. We will then collect 8.5 ml (2 teaspoons) of blood from you for HIV and syphilis testing. If this is your first antenatal visit, a separate blood sample in addition to the blood collected for routine testing will be collected for the study. At any time during the questions or before the blood specimen collection you can refuse to participate or ask us to stop. We will then stop. Participation in this study is voluntary. If you do not want to take part in this study you will still get the same care in the clinic that you would get if the study was not here. The questions and the blood test will be done today in a separate part of the clinic.

RETURNING OF TEST RESULTS
We will ask you to provide us your full name and mobile phone number to contact you to return to the clinic for your HIV test result. This information will be captured on a paper-based register and will be stored in a safe place. Your HIV result will not be given over the phone. The nurse will contact you only if you did not test for HIV during your antenatal visit or the laboratory test result done as part of the survey has a different test result. You will receive two SMS reminders: the first reminder will be sent two weeks after testing and will ask you to come and collect your results. A second reminder will be sent if the results have not been collected after 8 weeks. If the two tests have different result, we will ask you to repeat the test, and the final result will be confirmed 14 days after the second blood draw.

PRIVACY
Your answers to the questions will be marked on a form. Your name will not be written down when you answer the questions. Only a code will be linked to your answers. This code is called a barcode. So all your answers will be kept private. As the study sponsors, the National Department of Health, National Institute for Communicable Diseases and other sponsors may monitor or audit survey activities in conunction with the Wits Research Ethics Committee. The reason for this would be to make sure that the survey is being done the way it is supposed to be done. It would also make sure that your rights and health are protected. Your personal medical information will be kept confidential. The blood test results will be kept at the laboratory where they do the test as part of the everyday service.

The HIV test results may be known to the nurse at the clinic who will give you the result but not to other nurses in other clinics.

POTENTIAL BENEFITS
You will know your HIV test result. If you are HIV positive then you can get medicine to treat HIV through the routine health care system immediately. If you are HIV negative then you will get further counselling or HIV prevention methods. Pregnant women are also routinely offered HIV and syphilis testing at the clinic. You can test for HIV and syphilis at the clinic any time you want. Participation in the study is not a requirement for receiving HIV or syphilis testing, or for receiving HIV or syphilis treatment.

POTENTIAL HARM
The questions and the blood sample collection will take about 15 minutes of your time. If we ask questions that are a problem for you, you do not have to answer them. The blood test can cause a little pain. The good thing about the blood test is that you can get to know your HIV result. This means that you can then get the right care for yourself, and your baby. As we said your name and answers are kept private. We do not share your individual information with anyone in the clinic. Please ask me if you have any problems with the questions, or with the study.

WILL YOU GET ANY PAYMENT FOR BEING IN THE STUDY?
You will not receive any money or food for being part of the study. You do not have to pay to be in the study.

PEOPLE DOING THE STUDY
If you have any questions or problems about the research study please phone the person in charge of the study. His name and telephone numbers are: Professor Adrian J Puren (overall investigator)
Head of Department
Centre for HIV and STI
National Institute for Communicable Diseases (NICD)
1 Moltenfontein Road, Sandringham, Gauteng 2031
Tel: +2711398 6328 Mobile: +2782098048
Or for Ethical or Rights questions contact:
Professor CB Penny, Chairperson of the Human Research Ethics Committee (Medical) at the University of Witswatersrand, on telephone no. 011 717 2801, or by e-mail at Clement.Penny@wits.ac.za.
Annexure 3: Fourth generation serology platforms

Supplementary Table 1: the 4th generation serology platforms used for HIV testing in the 2019 antenatal survey

<table>
<thead>
<tr>
<th>Province</th>
<th>HIV Screening Test</th>
<th>HIV Confirmatory Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Cape</td>
<td>Abbott Architect HIV Ag/Ab I1000sr</td>
<td>COBAS 6000 c module</td>
</tr>
<tr>
<td>Limpopo/ North west</td>
<td>Cobas HIV Combi PT (E 601 Roche)</td>
<td>Architect HIV Ag/Ab combo (Architect Abbott)</td>
</tr>
<tr>
<td>Western and Northern Cape</td>
<td>Roche Cobas 6000 e601 HIV Combi PT Elecsys (Ag/Ab)</td>
<td>Abbott Architect HIV Ag/Ab Combo kit</td>
</tr>
<tr>
<td>Mpumalanga</td>
<td>HIV Combi PT 4th generation - Roche Cobas 6000</td>
<td>CHIV Siemens Centaur 4th generation</td>
</tr>
<tr>
<td>Free State</td>
<td>Roche Cobas 6000 e 601</td>
<td>Minividas HIV quick DUO</td>
</tr>
<tr>
<td>KZN</td>
<td>Abbott Architect HIV Antigen/Antibody Combo</td>
<td>Roche HIV Combi PT</td>
</tr>
<tr>
<td></td>
<td>Abbott Architect I1000SR HIV Ag/Ab combo</td>
<td>Diasorin Murex Ag/Ab Combination EIA</td>
</tr>
</tbody>
</table>
Annexure 4: Detailed provincial reports

Table of contents

Eastern Cape ... 62
Free State .. 70
Gauteng ... 78
KwaZulu-Natal .. 86
Limpopo .. 95
Mpumalanga ... 104
Northern Cape .. 112
North West ... 121
Western Cape ... 129

List of tables

Table 1: HIV prevalence by district in the Eastern Cape province, Antenatal HIV Sentinel Survey, 2013 to 2019 .. 64
Table 2: HIV prevalence by district in the Free State province, Antenatal HIV Sentinel Survey, 2013 to 2019 .. 72
Table 3: HIV prevalence by district in the Gauteng province, Antenatal HIV Sentinel Survey, 2013 to 2019 .. 80
Table 4: HIV prevalence by district in the KwaZulu-Natal province, Antenatal HIV Sentinel Survey, 2013 to 2019 .. 88
Table 5: HIV prevalence by district, in the Limpopo province, Antenatal HIV Sentinel Survey, 2013–2019 .. 97
Table 6: HIV prevalence by district, in the Mpumalanga province, Antenatal HIV Sentinel Survey, 2013–2019 .. 106
Table 7: HIV prevalence by district in the Northern Cape province, Antenatal HIV Sentinel Survey, 2013 to 2019 .. 114
Table 8: HIV prevalence by district in the North West province, Antenatal HIV Sentinel Survey, 2013–2019 .. 123
Table 9: HIV prevalence by district in the Western Cape province, Antenatal HIV Sentinel Survey, 2013 to 2019 .. 131

List of figures

Figure 1: Distribution of survey participants by five–year age group – Eastern Cape, Antenatal HIV Sentinel Survey, 2019 .. 62
Figure 2: The HIV epidemic curve among antenatal women, Eastern Cape, 1990–2019, Antenatal HIV Sentinel Survey .. 63
Figure 3: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Eastern Cape .. 63
Figure 4: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Eastern Cape .. 64
Figure 5: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Eastern Cape

Figure 6: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Eastern Cape

Figure 7: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape

Figure 8: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape

Figure 9: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Eastern Cape

Figure 10: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape

Figure 11: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey

Figure 12: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape

Figure 13: Distribution of survey participants by five–year age group – Free State, Antenatal HIV Sentinel Survey, 2019

Figure 14: The HIV epidemic curve among antenatal women, Free State, 1990–2019, Antenatal HIV Sentinel Survey

Figure 15: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Free State

Figure 16: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Free State

Figure 17: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Free State

Figure 18: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Free State

Figure 19: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Free State

Figure 20: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Free State

Figure 21: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Free State

Figure 22: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Free State

Figure 23: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Free State

Figure 24: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Free State

Figure 25: Distribution of survey participants by five–year age group – Gauteng, Antenatal HIV Sentinel Survey, 2019

Figure 26: The HIV epidemic curve among antenatal women, Gauteng, 1990–2019, Antenatal HIV Sentinel Survey

Figure 27: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Gauteng
Figure 28: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Gauteng

Figure 29: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Gauteng

Figure 30: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Gauteng

Figure 31: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Gauteng

Figure 32: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Gauteng

Figure 33: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Gauteng

Figure 34: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Gauteng

Figure 35: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Gauteng

Figure 36: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Gauteng

Figure 37: Distribution of survey participants by five–year age group – KwaZulu-Natal, Antenatal HIV Sentinel Survey, 2019

Figure 38: The HIV epidemic curve among antenatal women, KwaZulu-Natal, 1990–2019, Antenatal HIV Sentinel Survey

Figure 39: Change in district HIV prevalence estimates, 2017–2019, Antenatal HIV Sentinel Survey, KwaZulu-Natal

Figure 40: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, KwaZulu-Natal

Figure 41: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, KwaZulu-Natal

Figure 42: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, KwaZulu-Natal

Figure 43: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal

Figure 44: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal

Figure 45: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, KwaZulu-Natal

Figure 46: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal

Figure 47: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal

Figure 48: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal

Figure 49: Distribution of survey participants by five–year age group – Limpopo, Antenatal HIV Sentinel Survey, 2019

Figure 50: The HIV epidemic curve among antenatal women, Limpopo, 1990–2019, Antenatal HIV Sentinel Survey
Figure 51: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Limpopo .. 97
Figure 52: HIV prevalence trend by district, Antenatal HIV Sentinel Survey, 2013–2019, Limpopo .. 98
Figure 53: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Limpopo .. 99
Figure 54: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Limpopo .. 99
Figure 55: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Limpopo .. 100
Figure 56: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Limpopo .. 101
Figure 57: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Limpopo .. 102
Figure 58: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Limpopo .. 102
Figure 59: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Limpopo .. 103
Figure 60: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Limpopo .. 103
Figure 61: Distribution of survey participants by five–year age group – Mpumalanga, Antenatal HIV Sentinel Survey, 2019 .. 104
Figure 62: The HIV epidemic curve among antenatal women, Mpumalanga, 1990–2019, Antenatal HIV Sentinel Survey .. 105
Figure 63: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Mpumalanga .. 105
Figure 64: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Mpumalanga .. 106
Figure 65: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Mpumalanga .. 107
Figure 66: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Mpumalanga .. 107
Figure 67: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga .. 108
Figure 68: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga .. 109
Figure 69: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Mpumalanga .. 110
Figure 70: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga .. 110
Figure 71: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga .. 111
Figure 72: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga .. 112
Figure 73: Distribution of survey participants by five–year age group – Northern Cape, Antenatal HIV Sentinel Survey, 2019 .. 112
Figure 74: The HIV epidemic curve among antenatal women, Northern Cape, 1990–2019, Antenatal HIV Sentinel Survey ...113

Figure 75: Change in district HIV prevalence estimates – 2017 to 2019, Antenatal HIV Sentinel Survey, Northern Cape ...114

Figure 76: HIV prevalence trend by district, 2013–2019, Northern Cape, Antenatal HIV Sentinel Survey ..115

Figure 77: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Northern Cape116

Figure 78: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Northern Cape116

Figure 79: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape ...117

Figure 80: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape ...118

Figure 81: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Northern Cape ..119

Figure 82: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape ..119

Figure 83: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape ...120

Figure 84: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape ..121

Figure 85: Distribution of survey participants by five–year age group – North West, Antenatal HIV Sentinel Survey, 2019 ...121

Figure 86: The HIV epidemic curve among antenatal women, North West, 1990–2019, Antenatal HIV Sentinel Survey ...122

Figure 87: Change in district HIV prevalence estimates, 2017–2019, Antenatal HIV Sentinel Survey, North West ...123

Figure 88: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, North West ...124

Figure 89: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, North West125

Figure 90: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, North West125

Figure 91: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, North West ...126

Figure 92: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, North West ..127

Figure 93: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, North West ...127

Figure 94: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, North West ...128

Figure 95: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, North West ...128

Figure 96: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, North West ...129
Figure 97: Distribution of survey participants by five–year age group – Western Cape, Antenatal HIV Sentinel Survey, 2019 .. 130
Figure 98: The HIV epidemic curve among antenatal women, Western Cape, 1990–2019, Antenatal HIV Sentinel Survey .. 130
Figure 99: Change in district HIV prevalence estimates – 2017 to 2019, Antenatal HIV Sentinel Survey, Western Cape .. 131
Figure 100: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Western Cape .. 132
Figure 101: Knowledge of HIV-positive status and ART initiation by district , in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Western Cape ... 133
Figure 102: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Western Cape 134
Figure 103: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Western Cape .. 135
Figure 104: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Western Cape .. 135
Figure 105: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Western Cape .. 136
Figure 106: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Western Cape .. 137
Figure 107: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Western Cape .. 137
Figure 108: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Western Cape .. 138
Eastern Cape

Sample size realization and demographic characteristics

The sample size realization in Eastern Cape was 107.0% (5 692). At district level, sample size realization ranged from 99.0% (525) to 116.0% (1 324) for Joe Gqabi and Oliver Tambo districts respectively. Adolescent girls and young women (15–24 years) constituted 42% of participants in the province and only 13.4% were ≥35 years old (Figure 1).

HIV prevalence

HIV prevalence showed steady increase between 1990 and 2005 in Eastern Cape. Between 2005 and 2012, prevalence stabilized at around 28%–29%, and in 2013 and 2014 prevalence increased slightly to about 31%, which was followed by a sharp increase in prevalence in 2017 and 2019 to 33.7% and 36.5% respectively (Figure 2). Between 2017 and 2019, the prevalence increased in the older age group (i.e. 25–49 years), while in the two youngest age group (i.e. 15–19 years and 20–24 years) prevalence declined by 1.4% and 4% respectively – this is reassuring as increases in HIV prevalence in the two youngest age group are more likely to reflect new HIV infection.
The prevalence reported in 2015, 2017, and 2019 is for both first and follow-up visit attendees.

Figure 2: The HIV epidemic curve among antenatal women, Eastern Cape, 1990–2019, Antenatal HIV Sentinel Survey

Chris Hani, Buffalo City, Amatole, O.R. Tambo, and Joe Gqabi districts had the highest prevalence (>35%) in 2019 as shown in Figure 3. Between 2017 and 2019, prevalence increased by at least 2% (2.5%–7.6%) in most districts except in Nelson Mandela Metro (NMM), Sarah Baartman and Buffalo City that had a moderate increase of prevalence by 1.7%, 1.0% and 1.9% respectively, and Alfred Nzo had a moderate decline of prevalence by 0.7%.

**Table 1 and Figure 4 show the prevalence trend from 2013 to 2019. In 2019, district prevalence ranged from 30.9% in Alfred Nzo to 43.1% in Chris Hani. In Eastern Cape, even though there
appear to be year-to-year fluctuation in the prevalence trend, overall, prevalence has increased in almost all districts (except NMM) from the level in 2013.

Table 1: HIV prevalence by district in the Eastern Cape province, Antenatal HIV Sentinel Survey, 2013 to 2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013 %</th>
<th>95% CI</th>
<th>2014 %</th>
<th>95% CI</th>
<th>2015 %</th>
<th>95% CI</th>
<th>2017 %</th>
<th>95% CI</th>
<th>2019 %</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfred Nzo</td>
<td>25.3</td>
<td>20.5 – 30.9</td>
<td>20.5 – 30.9</td>
<td>21.8 – 32.1</td>
<td>30.9</td>
<td>27.0 – 35.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amatole</td>
<td>35.3</td>
<td>31.4 – 39.4</td>
<td>24.8 – 34.6</td>
<td>23.2 – 34.2</td>
<td>38.2</td>
<td>34.7 – 41.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffalo City</td>
<td>29.5</td>
<td>24.8 – 33.4</td>
<td>31.4 – 39.4</td>
<td>26.7 – 36.2</td>
<td>34.7</td>
<td>34.3 – 43.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chris Hani</td>
<td>34.5</td>
<td>30.2 – 35.1</td>
<td>30.2 – 39.0</td>
<td>27.4 – 35.5</td>
<td>43.1</td>
<td>39.8 – 46.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joe Gqabi</td>
<td>30.7</td>
<td>24.2 – 34.0</td>
<td>24.2 – 38.8</td>
<td>19.7 – 31.9</td>
<td>37.1</td>
<td>31.9 – 42.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMM</td>
<td>31.4</td>
<td>24.9 – 38.7</td>
<td>24.9 – 38.9</td>
<td>24.0 – 36.5</td>
<td>31.4</td>
<td>28.9 – 34.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O.R. Tambo</td>
<td>32.6</td>
<td>29.0 – 36.0</td>
<td>28.8 – 36.4</td>
<td>30.4 – 35.2</td>
<td>38.1</td>
<td>35.5 – 40.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarah Baartman</td>
<td>27.5</td>
<td>20.4 – 35.9</td>
<td>14.5 – 36.1</td>
<td>17.9 – 34.8</td>
<td>34.2</td>
<td>28.5 – 40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Cape province</td>
<td>31.4</td>
<td>29.4 – 33.5</td>
<td>29.4 – 33.5</td>
<td>28.2 – 33.7</td>
<td>35.2</td>
<td>35.2 – 37.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees.

Figure 4: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Eastern Cape
PMTCT cascade

In the Eastern Cape sample, 97.2% of HIV-positive women in 2019 were aware of their HIV status, and 94.6% of those who knew their HIV-positive status were on ART at the time of the survey. By district, the lowest knowledge of HIV status was in Amatole at 95.7% and the highest was in NMM at 98.3%. NMM had the lowest ART initiation at 90.9% while O.R. Tambo had the highest ART initiation at 97%. Both knowledge of HIV-positive status and ART initiation increased between 2017 and 2019 in all districts; however, these increases were not statistically significant (Figure 5).

Figure 5: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Eastern Cape

Knowledge of HIV-positive status and ART initiation before pregnancy

Knowledge of HIV status before pregnancy in the Eastern Cape was a little above the national average (73.3% compared to 72.7%). Among those who knew their HIV-positive status before pregnancy, 91.8% started ART before pregnancy. By district, knowledge of HIV status before pregnancy ranged from 69.1% in Joe Gqabi to 77.5% in O.R. Tambo districts in 2019. NMM had the lowest ART initiation before pregnancy (at 86.6% and 86.2%) and Alfred Nzo had the highest ART initiation before pregnancy (at 97.5% and 96.4%) in 2017 and 2019 respectively. Between 2017 and 2019, the percentage of women who knew their HIV-positive status before pregnancy improved in all districts. ART initiation before pregnancy improved in all districts except in Alfred Nzo, Chris Hani, NMM, and O.R. Tambo districts where ART initiation before pregnancy slightly declined (Figure 6).
Denominator for knowledge of HIV-positive status before pregnancy was EIA positives.
Denominator for ART initiation before pregnancy was the number of HIV-positive women who were aware of their HIV-positive status before pregnancy

Figure 6: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Eastern Cape

Planning of pregnancy

Close to 59% of the pregnancies in Eastern Cape were unintended (Figure 7). All districts had higher unintended pregnancy than the national average (51.6%). One district (Alfred Nzo) had the fifth highest prevalence of unintended pregnancy nationally at 65.3%. The prevalence of unintended pregnancy was higher among HIV-negative women compared to HIV-positive women at province level and in five districts (except NMM, Sarah Baartman and Buffalo city) – this difference was statistically significant at province level and in one district (in Amatole) (Figure 7). Even though HIV-negative women had higher unintended pregnancy in most districts, the prevalence of unintended pregnancy among HIV-positive women was still above 50% in all districts indicating the need to strengthen access to contraceptive services among both HIV-negative and HIV-positive women. In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy (unintended pregnancy ranging 71.2%–92.7%) followed by young women (20 to 24 years: unintended pregnancy ranging 56.4%–75.2%) (*data not presented in graph*). Single women and women in a non-cohabiting relationship had the highest level of unintended pregnancy (>65%) while married women had lower unintended pregnancy (< 35%) in all districts in the province (*data not presented in graph*).
Some of the confidence intervals are wide due to small sample size at district level

Figure 7: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape

Early ANC attendance

About two-thirds of participants in Eastern Cape initiated ANC before 20 weeks of gestational age (Figure 8). The lowest attendance of ANC before 20 weeks was in Alfred Nzo district (52.4%) and the highest was in Sarah Baartman district (74.1%). Between 4.6% (in Chris Hani) and 9.4% (in Alfred Nzo) of participants across districts (6.6% at province level) initiated ANC at the third trimester (*data not presented in graph*). In three districts (Buffalo city, NMM, and Amatole) adolescent girls (15–19 years) had significantly lower attendance of ANC before 20 weeks (60.5%, 57.6%, 55.8% respectively) compared to the average for the districts (72.6%, 72.7% and 65.7% respectively). In the other districts, there was no substantial difference in ANC attendance by age group. Women who had unintended pregnancy had lower attendance of ANC before 20 weeks (60.9%) compared to women whose pregnancy was intended (75.6%). Multigravida women had slightly lower (64.8%) attendance of ANC before 20 weeks compared to primigravida women (67.5%).
Figure 8: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape

Maternal syphilis screening and treatment coverage

Maternal syphilis screening coverage was 97.2% in Eastern Cape, representing an increase of 0.8% points in syphilis screening coverage from the level in 2017 (96.4%) (Figure 9). All districts except O.R. Tambo district had greater than 95% maternal syphilis screening coverage in both 2017 and 2019.

Figure 9: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Eastern Cape,

Of those who had syphilis screening, at province level, 3.2% (95% CI: 2.3%–4.6%) were positive for syphilis, 82.8% were negative, 12.8% were awaiting result and 1.2% results were not in file (Figure 10). Alfred Nzo and O.R. Tambo districts had the highest pending results at >25% (13.8% and 12.7% of participants with pending results in the two districts.)
respectively were follow-up ANC visit attendees), and Sarah Baartman and NMM had the lowest pending results at <5%.

Figure 10: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape

After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in Eastern Cape among those who had syphilis test result was 3.8% (95% CI: 2.6–5.4%), and this was the highest prevalence nationally (1.2% points higher than the national average – 2.6%). The current prevalence represented a 2% points increase from prevalence in 2015 (which was 1.8%). By district, the prevalence of syphilis ranged from 1.1% in Chris Hani to 7.8% in Amatole districts. The district level prevalence estimates need to be interpreted with caution as the CIs around these estimates are wide due to small sample size (Figure 11).

Figure 11: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape

Of the 155 participants who were syphilis positive and whose syphilis treatment status was reported in Eastern Cape, 97.3% (151) received at least one dose of treatment for syphilis
(Figure 12). Of those treated for syphilis and had type of treatment data reported (147), 94.7% (139) were treated with at least one dose of BCG (Figure 12). Syphilis treatment data was missing for 8.3% (14) of syphilis positive participants in the province, and type of treatment data was missing for 2.6% (4) of participants treated for syphilis; these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive treatment for syphilis, the coverage of syphilis treatment and treatment with BCG drops from 97.3% to 89.5% and from 94.7% to 92.2% respectively. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.

![Figure 12: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Eastern Cape](image)

Free State

Sample size realization and demographic characteristics

The sample size realization in Free State was 105% (2,851). All districts exceeded the planned sample size by 2%–6%. Adolescents and young women (15–24 years) constituted 41.8% of the sample and only 12.2% were ≥35 years old (Figure 13).
HIV prevalence

HIV prevalence in Free State increased over the years to 27.9% in 1999; then gradually increased at a slow rate to 32.9% in 2008. Between 2009 and 2019 prevalence fluctuated between 30% to 34%. In 2019 HIV prevalence was 32.8% (Figure 14).

Between 2017 and 2019, in two districts, namely, Lejweleputswa and Fezile Dabi, prevalence increased by 3.2% and 2.3% respectively (Figure 15). In the other three districts prevalence declined by 3.7% in Thabo Mofutsanyane (Thabo M.), by 0.1% in Mangaung and by 0.9% in Xhariep districts. None of these changes were statistically significant.
From 2013 to 2019, Mangaung had a consistent increase in prevalence from 30.4% to 34.4%. In Xhariep prevalence consistently increased between 2013 (25.8%) and 2015 (35.1%), however prevalence dropped from 35.1% in 2015 to 27.5% and 26.6% in 2017 and 2019 respectively. In Fezile Dabi and Lejweleputswa districts, prevalence consistently increased between 2015 and 2019. Prevalence fluctuated between 30% and 36% over the years in Thabo M. district (Table 2 and Figure 16).

Table 2: HIV prevalence by district in the Free State province, Antenatal HIV Sentinel Survey, 2013 to 2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2017</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
<tr>
<td>Fezile Dabi</td>
<td>26.0</td>
<td>21.6 – 30.8</td>
<td>31.4</td>
<td>25.6 – 37.8</td>
<td>26.5</td>
</tr>
<tr>
<td>Lejweleputswa</td>
<td>32.3</td>
<td>27.9 – 37.2</td>
<td>38.4</td>
<td>33.9 – 43.1</td>
<td>27.3</td>
</tr>
<tr>
<td>Mangaung</td>
<td>30.4</td>
<td>25.5 – 35.8</td>
<td>31.9</td>
<td>26.1 – 38.3</td>
<td>31.7</td>
</tr>
<tr>
<td>Thabo M.</td>
<td>30.1</td>
<td>26.4 – 34.1</td>
<td>34.9</td>
<td>30.6 – 39.5</td>
<td>31.0</td>
</tr>
<tr>
<td>Xhariep</td>
<td>25.8</td>
<td>18.6 – 34.6</td>
<td>32.2</td>
<td>22.3 – 44.2</td>
<td>35.1</td>
</tr>
<tr>
<td>Free State province</td>
<td>29.8</td>
<td>27.6 – 32.0</td>
<td>34.3</td>
<td>31.8 – 36.9</td>
<td>29.8</td>
</tr>
</tbody>
</table>

The prevalence reported is for both first and follow-up visit attendees. Thabo M.: Thabo Mofutsanyane.

Figure 15: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Free State.
The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees. The confidence intervals are wide due to small sample size at district level.

Figure 16: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Free State

PMTCT cascade

In the Free State sample, of the women who were positive in 2019, 98.3% were aware of their HIV-positive status at the time of the survey and 96.1% of those who knew their HIV status were on ART. By district, the lowest knowledge of HIV-positive status and ART initiation was in Fezile Dabi at 96.9% and 90.9% respectively and the highest was in Xhariep district at 100% for both knowledge of HIV-positive status and ART initiation. Both knowledge of HIV-positive status and ART initiation increased between 2017 and 2019 in all districts (Figure 17).
Weighted percentages. HIV+ve: HIV positive; ART – Antiretroviral therapy

Figure 17: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Free State

Knowledge of HIV-positive status and ART initiation before pregnancy

Knowledge of HIV-positive status before pregnancy in the Free State in 2019 was slightly higher than the national average (73.1% compared to 72.7%). In the same year, of those who knew their HIV-positive status before pregnancy, 91.8% were initiated on ART before pregnancy. By district, knowledge of status before pregnancy ranged from 62.9% in Fezile Dabi to 90% in Xhariep. Xhariep had the highest ART initiation before pregnancy in the province at 97.8%. Fezile Dabi also had the lowest ART initiation before pregnancy at 85.1%. Between 2017 and 2019, the percentage of women who knew their HIV-positive status before pregnancy increased in all districts in the province, while, ART initiation before pregnancy increased only in two (Thabo M. and Xhariep) districts (Figure 18).

Denominator for knowledge of HIV-positive status before pregnancy was EIA positives.
Denominator for ART initiation before pregnancy was the number of HIV-positive women who were aware of their HIV-positive status before pregnancy

Figure 18: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Free State
Planning of pregnancy

Close to 56% of the pregnancies in Free State were unintended (Figure 19). All districts except Mangaung had higher unintended pregnancy than the national average (51.6%). The prevalence of unintended pregnancy was higher among HIV-negative women than HIV-positive women in all districts except Thabo M., and this difference was statistically significant at province level. Even though HIV-negative women had higher unintended pregnancy in most districts, the prevalence of unintended pregnancy among HIV-positive women was ≥50% in all districts, indicating the need to improve access and uptake of contraceptive services among both HIV-positive and HIV-negative women. In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy (ranging between 73.5% in Xhariep to 87.1% in Mangaung district) followed by young women (20 to 24 years) ranging between 59.7% in Mangaung to 68.2% in Thabo M. districts (data not presented in graph). Single women and women in a non-cohabiting relationship had the highest (>62%) prevalence of unintended pregnancy across all districts in the province. Unintended pregnancy was below 45% among married women in all districts in the province (data not presented in graph).

Due to small sample size at district level, the confidence interval for Xhariep is wide.

Figure 19: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Free State

Early ANC attendance

More than two-thirds of participants in Free State initiated ANC before 20 weeks of gestational age (Figure 20). Attendance of ANC before 20 weeks was lower than the province average in Thabo M. and Fezile Dabi districts. Between 4.5% (in Xhariep) and 8% (in Thabo M) of participants across districts (6.4% at provincial level) initiated ANC at the third trimester (data not presented in graph). In Xhariep and Fezile Dabi districts, the youngest (15–19 years) and the oldest age (35–49 years) groups had lower attendance of ANC before 20 weeks compared to the other age groups. In Mangaung, attendance of ANC before 20 weeks was much lower among adolescent girls (15–19 years) (45.2%) compared to the other age groups (72.8%–74.7%). In the other districts, there was no substantial difference in ANC attendance by age group. Women who had unintended pregnancy had lower
attendance of ANC before 20 weeks (62.2%) compared to women whose pregnancy was intended (78.6%). Multigravida women had slightly lower (68%) attendance of ANC before 20 weeks compared to primigravida women (71%).

Figure 20: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Free State

Maternal syphilis screening and treatment coverage

Maternal syphilis screening coverage was 99.1% in Free State, representing an increase of 1.8% points in syphilis screening coverage from the level in 2017 (97.3%) (Figure 21). All districts in Free State had greater than 98% maternal syphilis screening coverage in the 2019 survey.

Figure 21: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Free State
Of those who had syphilis screening, at province level, 3.2% (95% CI: 2.7%–3.8%) were positive for syphilis, 92.3% were negative, 4% were awaiting result and 0.5% results were not in file (Figure 22). Pending results varied by district ranging from only 0.9% in Mangaung to 10.7% in Fezile Dabi districts (20.8% of participants with the pending results in Fezile Dabi were follow-up visit attendees).

Figure 22: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Free State

After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in Free State among those who had syphilis test result was 3.3% (95% CI: 2.8%–4.0%), and this was 0.7% points higher than the national average (2.6%). However, prevalence reduced by 1.3% points from its level in 2015 (which was 4.6%). By district, the prevalence of syphilis ranged from 2.9% in Mangaung to 4% in Lejweleputswa districts (Figure 23). The district level prevalence estimates need to be interpreted with caution as the CIs around these estimates are wide due to small sample size.

Figure 23: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Free State

The confidence intervals are wide due to small sample size at district level
Of 82 participants who were syphilis positive and whose syphilis treatment status was reported in Free State, 86.5% (71) received at least one dose of treatment for syphilis (Figure 24). Of those treated for syphilis and had type of treatment data reported (65), 89.2% (58) were treated with at least one dose of BCG (Figure 24). Syphilis treatment data was missing for 6.8% (6) of syphilis positive participants in the province, and type of treatment data was missing for 8.5% (6) of participants treated for syphilis; these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive treatment for syphilis, the coverage of syphilis treatment and treatment with BCG drops from 86.5% to 80.6% and from 89.2% to 81.6% respectively. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.

Figure 24: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Free State

Gauteng

Sample size realization and demographic characteristics

Sample size realization was 113% (5 375) in Gauteng province. At district level, sample size achievement ranged from 104% in West Rand to 125% in Johannesburg Metro districts. More than a third (35.4%) of participants were 15–24 years old and only 13.9% were ≥35 years old (Figure 25). The proportion of 15–24 year old participants in Gauteng province was lower than the national average (40.9%).
Age groups are in years

Figure 25: Distribution of survey participants by five-year age group – Gauteng, Antenatal HIV Sentinel Survey, 2019

HIV prevalence

HIV prevalence in Gauteng increased over the years to 33.1% in 2004, then declined gradually to 27.6% in 2014; and increased again to 32.2% in 2017. In 2019, HIV prevalence was 28.1% representing a 4.1% points decline from prevalence in 2017 (Figure 26).

At district level, in 2019 prevalence declined in all districts from its level in 2017. Prevalence declined by >2% in all five districts (Figure 27).
The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees. COJ: City of Johannesburg

Figure 27: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Gauteng

Table 3 and Figure 28 show the prevalence trend from 2013 to 2019. District prevalence ranged from 23.1% in City of Tshwane to 32.8% in Ekurhuleni in 2019. In City of Johannesburg (COJ) and City of Tshwane prevalence increased between 2013 and 2017 and then declined in 2019. In the other three districts prevalence fluctuated over the years.

Table 3: HIV prevalence by district in the Gauteng province, Antenatal HIV Sentinel Survey, 2013 to 2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2017</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
<tr>
<td>COJ</td>
<td>27.3</td>
<td>24.7–30.1</td>
<td>27.3</td>
<td>25.2–29.6</td>
<td>29.6</td>
</tr>
<tr>
<td>Ekurhuleni</td>
<td>33.5</td>
<td>30.4–36.6</td>
<td>30.2</td>
<td>27.3–33.4</td>
<td>31.6</td>
</tr>
<tr>
<td>Sedibeng</td>
<td>29.2</td>
<td>24.8–33.9</td>
<td>28</td>
<td>23.5–32.9</td>
<td>34.0</td>
</tr>
<tr>
<td>Tshwane</td>
<td>23.4</td>
<td>20.1–27.7</td>
<td>23.7</td>
<td>20.6–27.1</td>
<td>25.3</td>
</tr>
<tr>
<td>West Rand</td>
<td>33</td>
<td>27.3–39.3</td>
<td>31.3</td>
<td>26.9–36.0</td>
<td>35.5</td>
</tr>
<tr>
<td>Gauteng province</td>
<td>28.6</td>
<td>27.0–30.3</td>
<td>27.6</td>
<td>27.0–30.3</td>
<td>30.2</td>
</tr>
</tbody>
</table>
The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees. The confidence intervals are wide due to small sample size at district level. COJ: City of Johannesburg

Figure 28: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Gauteng

PMTCT cascade

In the Gauteng sample of HIV-positive women in 2019, 97.5% were aware of their HIV status, and 94.6% of those who knew their status were on ART at the time of this survey. In the same year, knowledge of HIV-positive status was above 95% across all districts in the province. The lowest ART initiation was in Sedibeng district at 92% and the highest was in Ekurhuleni district at 96%. Both knowledge of HIV-positive status and ART initiation increased between 2017 and 2019 in all districts except in Ekurhuleni and Tshwane districts where knowledge of HIV status was slightly lower (by <1%) in 2019 compared to 2017 (Figure 29).
Knowledge of HIV-positive status and ART initiation before pregnancy

Despite significant progress between 2017 and 2019, knowledge of HIV status before pregnancy in Gauteng province was lower than the national average (67.6% compared to 72.7%) in 2019. Of those who knew their HIV-positive status before pregnancy, 93.8% were initiated on ART before pregnancy in 2019 as compared to 91.8% in 2017 (this difference was not statistically significant). By district, knowledge of HIV status before pregnancy ranged from 62.8% in Tshwane to 71.8% in the Ekurhuleni district. Tshwane also had the lowest ART initiation before pregnancy (91.2%) (Figure 30). Knowledge of HIV status before pregnancy increased between 2017 and 2019 across all districts.

Planning of pregnancy

Just below half (46.3%) of the pregnancies in Gauteng were unintended (Figure 31). Unintended pregnancy was lower in all Gauteng districts compared to the national average (51.6%). City of Tshwane had the lowest unintended pregnancy at 41.5% while Ekurhuleni had the highest level of unintended pregnancy at 51.2%. Contrary to the trend observed in other provinces, in Gauteng, the prevalence of unintended pregnancy was higher among HIV-positive women compared to HIV-negative women in three of the five districts (Ekurhuleni, City of Tshwane and West Rand). In the other two districts, the prevalence of unintended pregnancy was almost equal between HIV-negative and HIV-positive women (in COJ) or HIV-negative women had slightly higher unintended pregnancy compared to HIV-positive women (in Sedibeng). All differences observed between HIV-negative and HIV-positive women were not statistically significant. In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy (ranging between 61.8% in West Rand district to 72.5% in Ekurhuleni district) followed by young women (20–24 years: ranging between 48.4% in Tshwane district to 59.2% in Sedibeng district) (data not presented in graph). At province level, single women and women in a non-cohabiting relationship had the highest prevalence of unintended pregnancy, but the prevalence of unintended pregnancy in this group substantially varied by district ranging between 59% (in COJ) to 75.6% (in Ekurhuleni) and 56.2% (in Tshwane) to
65.3% (in Ekurhuleni) for single women and women in a non-cohabiting relationship respectively. Unintended pregnancy was below 35% among married women in all districts in the province with the lowest unintended pregnancy among married women reported in COJ at 19.4% (data not presented in graph).

Some of the confidence intervals are wide due to small sample size at district level

Figure 31: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Gauteng

Early ANC attendance

Approximately two-thirds of participants in Gauteng province initiated ANC before 20 weeks of gestational age (Figure 32). Attendance of ANC before 20 weeks was >70% in Sedibeng and West Rand districts while Ekurhuleni, COJ and City of Tshwane districts recorded below provincial average attendance of ANC before 20 weeks at 66.4%, 60.6% and 63% respectively. Between 4.6% (in West Rand) and 8.1% (in COJ) of participants across districts (6.2% at provincial level) initiated ANC at the third trimester (data not presented in graph). Attendance of ANC before 20 weeks was lower among adolescent girls (15–19 years) compared to the other age groups in COJ, City of Tshwane and Ekurhuleni districts, while in West Rand and Sedibeng districts, both the youngest (15–19 years) and the oldest age (35–49 years) groups had the lowest attendance of ANC at 20 weeks of gestational age. Women who had unintended pregnancy (63.3%) and multigravida women (65.6%) had lower attendance of ANC before 20 weeks compared to women whose pregnancy was intended (70.2%) and primigravida women (70.5%) respectively.
Maternal syphilis screening and treatment coverage

Maternal syphilis screening coverage was 96.8% in Gauteng, representing an increase of 0.2% points in syphilis screening coverage from the level in 2017 (96.6%) (Figure 33). All districts had greater than 95% maternal syphilis screening coverage in 2019. In three districts (Ekurhuleni, COJ, and Sedibeng) syphilis screening coverage showed modest increase, while in two districts (Tshwane and West Rand) syphilis screening coverage dropped slightly between 2017 and 2019.

Figure 32: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Gauteng

Figure 33: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Gauteng
Of those who had syphilis screening, at province level, 1.7% (95% CI: 1.4%–2.0%) were positive for syphilis, 69.6% were negative, 27.7% were awaiting result and 1% results were not in file (Figure 34). Pending results ranged from only 6.1% in Sedibeng to 40.7% in City of Tshwane district. Gauteng had the third highest proportion of pending results nationally next to Limpopo and North West provinces. Between 10.1% and 14.9% of the pending results in Ekurhuleni, COJ, Tshwane and West Rand districts were for follow-up visit attendees.

After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in Gauteng among those who had syphilis test result was 2.3% (95% CI: 2.0%–2.8%), and this was 0.3% points lower than the national average (2.6%). Prevalence increased by 0.6% points from its level in 2015 (1.7%). By district, the prevalence of syphilis ranged from 1.9% in Sedibeng to 2.7% in Ekurhuleni districts (Figure 35). The district level prevalence estimates need to be interpreted with caution as the CIs around these estimates are wide due to small sample size.
Of 75 participants who were syphilis positive and whose syphilis treatment status was reported in Gauteng, 93.1% (70) received at least one dose of treatment for syphilis (Figure 36). Of those treated for syphilis and had type of treatment data reported (66), 97.2% (64) were treated with at least one dose of BCG (Figure 36). Syphilis treatment data was missing for 7.4% (6) of syphilis positive participants in the province, and type of treatment data was missing for 5.7% (4) of participants treated for syphilis; these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive treatment for syphilis, the coverage of syphilis treatment and treatment with BCG drops from 93.1% to 86% and from 97.2% to 91.8% respectively. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.

![Figure 36: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Gauteng](image)

KwaZulu-Natal

Sample size realization and demographic characteristics

Sample size realization was 96% (8,430) in KwaZulu-Natal province. The lowest sample size realization was in iLembe and King Cetshwayo districts at 85% and the highest sample size realization was in Zululand, where planned sample size was exceeded by 9% (109%). The proportion of participants in the age group 15–24 years (44.1%) was higher than the national average (40.9%) (Figure 37). The proportion of participants in the age group 35 and above were 11.2%.
Age groups are in years

Figure 37: Distribution of survey participants by five-year age group – KwaZulu-Natal, Antenatal HIV Sentinel Survey, 2019

HIV prevalence

In KwaZulu-Natal, HIV prevalence increased until 2004 followed by plateauing of prevalence at around 39% between 2004 and 2010. HIV prevalence started to show gradual increase between 2013 and 2015 reaching a high of 44.4% in 2015, then prevalence declined to about 41% in 2017 and 2019. Overall, HIV prevalence in KwaZulu-Natal was higher by about 10% from the national average (Figure 38).

Figure 38: The HIV epidemic curve among antenatal women, KwaZulu-Natal, 1990–2019, Antenatal HIV Sentinel Survey

The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees.

Figure 39: The prevalence estimates at district level. In 2019, the prevalence of HIV at district level ranged between 33.6% (in uMzinyathi) and 44.2% (in Ugu). Between 2017 and 2019, in three districts, namely, Amajuba, Zululand and uMkhanyakude, there were large (≥2%) increases in prevalence. In other two districts (Ugu and Harry Gwala) prevalence increased by <2%. In five districts prevalence declined by 1.9% in iLembe, by 2.5% in uMgungundlovu, by 4.1% in King Cetshwayo, by 8.1% in uMzinyathi and by 4.9% in
uThukela – none of these differences were statistically significant. Prevalence stayed the same in eThekwini district between 2017 and 2019.

At district level, in Amajuba and Harry Gwala, overall prevalence increased between 2013 and 2019 except the slight decline in 2017. In King Cetshwayo and eThekwini, prevalence increased between 2013 and 2015, then declined in 2017 and 2019. In uMkhanyakude, uMzinyathi and uThukela districts prevalence fluctuated over the years with no clear trend. In uMgungundlovu district prevalence increased sharply in 2014 to 47.6% and over the years gradually declined to 44.1% in 2019. In uLembe prevalence declined from almost 46% in 2013 to 41.2% in 2019. In Ugu and Zululand districts prevalence increased between 2013 and 2015, however in 2017 prevalence declined and then increased again in 2019 (Table 4 and Figure 40).

Table 4: HIV prevalence by district in the KwaZulu-Natal province, Antenatal HIV Sentinel Survey, 2013 to 2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013</th>
<th>95% CI</th>
<th>2014</th>
<th>95% CI</th>
<th>2015</th>
<th>95% CI</th>
<th>2017</th>
<th>95% CI</th>
<th>2019</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amajuba</td>
<td>32.8</td>
<td>27.7–38.3</td>
<td>36.8</td>
<td>32.3–41.6</td>
<td>39.7</td>
<td>34.9–44.8</td>
<td>36.4</td>
<td>31.7–41.2</td>
<td>43.0</td>
<td>39.5–46.6</td>
</tr>
<tr>
<td>Harry Gwala</td>
<td>36.6</td>
<td>32.5–41.0</td>
<td>36.7</td>
<td>30.4–43.4</td>
<td>39.5</td>
<td>35.8–43.4</td>
<td>39.2</td>
<td>36.7–41.7</td>
<td>39.8</td>
<td>34.6–45.3</td>
</tr>
<tr>
<td>King Cetshwayo</td>
<td>38.9</td>
<td>34.4–43.5</td>
<td>45.7</td>
<td>37.6–54.0</td>
<td>45.9</td>
<td>37.0–55.1</td>
<td>39.1</td>
<td>34.0–44.5</td>
<td>35.0</td>
<td>32.1–38.1</td>
</tr>
</tbody>
</table>
The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees. The confidence intervals are wide due to small sample size at district level.

Figure 40: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, KwaZulu-Natal

PMTCT cascade

KwaZulu-Natal had the highest knowledge of HIV status and ART initiation in the ANC nationally. Almost all (98.6%) HIV-positive women were aware of their HIV status at the time of the survey and of those who knew their HIV-positive status, 97.5% were on ART (Figure 41). Knowledge of HIV-positive status was above 97% across all districts. ART initiation
among those who knew their HIV status ranged between 95.4% in eThekwini district to 100% in iLembe district.

Figure 41: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, KwaZulu-Natal

Knowledge of HIV-positive status and ART initiation before pregnancy

Knowledge of HIV-positive status before pregnancy and ART initiation was high in KwaZulu-Natal compared to the national average. At province level 76.8% of HIV-positive women were aware of their HIV-positive status before pregnancy. Knowledge of HIV status before pregnancy among HIV-positive pregnant women was above the national average (72.7%) in nine of the eleven districts (except eThekwini and Amajuba districts) (Figure 42). Of those who were aware of their HIV status before pregnancy, 95.7% initiated ART before pregnancy. The highest knowledge of HIV status before pregnancy was in Harry Gwala (83.5%) and the lowest was in eThekwini (69.7%). Between 2017 and 2019, the percentage of women who knew their HIV-positive status before pregnancy increased in all districts. ART initiation before pregnancy ranged between 91.5% in Amajuba to 97.7% in uMzinyathi district. ART initiation before pregnancy increased in nine of the eleven districts (except in Amajuba and Harry Gwala districts).
KwaZulu-Natal had the highest prevalence of unintended pregnancy nationally at 60.6% (Figure 43). By district, prevalence of unintended pregnancy ranged from 51.5% in uMzinyathi to 71.8% in Amajuba district. Unintended pregnancy was higher than the national average in ten of the eleven districts in KwaZulu-Natal (except uMzinyathi district). In nine of the eleven districts (except uThukela and uMzinyathi districts) the prevalence of unintended pregnancy was higher among HIV-negative women compared to HIV-positive women. This difference (in unintended pregnancy between HIV-negative women and HIV-positive women) was large (>5%) in five districts (iLembe, King Cetshwayo, Ugu, uMgungundlovu and Zululand districts). However, all differences observed between HIV-negative and HIV-positive women were statistically non-significant. In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy (ranging between 61.8% in Amajuba districts to 85.5% in uMgungundlovu districts) followed by young women (20–24 years: ranging between 50.8% in uMzinyathi to 76.9% in eThekwini districts) (data not presented in graph). The prevalence of unintended pregnancy was >75% among single women and >60% among women in a non-cohabiting relationship in all the eleven districts (data not presented in graph). Married women had lower unintended pregnancy (<42%) across districts compared to unmarried women.
The confidence intervals are wide due to small sample size at district level.

Figure 43: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal

Early ANC attendance

KwaZulu-Natal had the second highest early ANC attendance rate nationally (next to Western Cape) with 73.7% of participants in the province initiating ANC before 20 weeks of gestational age (Figure 44). By district, attendance of ANC before 20 weeks ranged between 65.4% (in Amajuba) and 79.7% (in Ugu). In all districts, except Amajuba and uThukela districts, attendance of ANC before 20 weeks was higher than the national average (70.1%). Between 2.0% (in uMzinyathi) and 6.2% (in Amajuba and uMgungundlovu) of participants across districts (4.4% at provincial level) initiated ANC in their third trimester (*data not presented in graph*). In all districts, the youngest (15–19 years) age group had the lowest attendance of ANC compared to the other age groups. In addition in four districts (eThekwini, iLembe, Harry Gwala and uThukela), the oldest age group (35–49 years) had the second lowest attendance of ANC in the province. Women who had unintended pregnancy had lower attendance of ANC (71.4%) compared to women whose pregnancy was intended (79.5%). There was no difference in early attendance of ANC between primigravida and multigravida women.
Maternal syphilis screening and treatment coverage

Maternal syphilis screening coverage was 98.7% in KwaZulu-Natal, representing an increase of 0.3% points in syphilis screening coverage from the level in 2017 (98.4%) (Figure 45). All districts had greater than 95% maternal syphilis screening coverage in 2019.

Of those who had syphilis screening, at province level, 2.8% (95% CI: 2.5%–3.2%) were positive for syphilis, 86.8% were negative, 9.5% were awaiting result and 0.9% results were not in their file (Figure 46). Pending results ranged from only 0.3% in uThukela to 17% in uMgungundlovu (14% of the pending results in uMgungundlovu were for follow-up visit attendees and 86% were for first-ANC-visit attendees).

Figure 44: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal

Figure 45 Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, KwaZulu-Natal
After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in KwaZulu-Natal province among those who had syphilis test result was 3.2% (95% CI: 2.8%–3.6%), and this was 0.6% points higher than the national average (2.6%) and represented a 0.9% points increase from the prevalence in 2015 (2.3%). By district, the prevalence of syphilis ranged from 1.6% in uMzinyathi to 5.2% in iLembe (Figure 47). The district level prevalence estimates need to be interpreted with caution as the CIs around these estimates are wide due to small sample size.

![Figure 46: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal](image)

The confidence intervals are wide due to small sample size at district level

Figure 47: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal

Of 209 participants who were syphilis positive and whose syphilis treatment status was reported in KwaZulu-Natal, 93.9% (196) received at least one dose of treatment for syphilis
(Figure 48). Of those treated for syphilis and had type of treatment data reported (163), 92.9% (151) were treated with at least one dose of BCG. Syphilis treatment data was missing for 8.3% (19) of syphilis positive participants in the province, and type of treatment data was missing for 16.8% (33) of participants treated for syphilis; these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive treatment for syphilis, the coverage of syphilis treatment and treatment with BCG drops from 93.9% to 86% and from 92.9% to 77.2% respectively. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.

![Figure 48: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, KwaZulu-Natal](image)

Limpopo

Sample size realization and demographic characteristics

The sample size realization in Limpopo was 96% (3 053). At district level, the lowest sample size realization was in Mopani district (86%) and the highest was in Sekhukhune district (108%). Just above two-fifths (40.8%) of participants were women in the age group 15–24 years and 14.6% were ≥35 years old (Figure 49).
Figure 49: Distribution of survey participants by five-year age group – Limpopo, Antenatal HIV Sentinel Survey, 2019

HIV Prevalence

The epidemic curve in Figure 50 shows the rapid increase in HIV prevalence in Limpopo province between 1990 and 2005, followed by slowing down in the rate of prevalence increase between 2015 (21.5%) and 2017 (23.4%). Prevalence dropped sharply (from 23.4% to 19.7%) between 2017 and 2019.

The prevalence reported in 2015, 2017, and 2019 is for both first and follow-up visit attendees

Figure 50: The HIV epidemic curve among antenatal women, Limpopo, 1990–2019, Antenatal HIV Sentinel Survey

In 2019, district level prevalence ranged between 13.2% in Vhembe to 26.1% in Mopani. Prevalence between 2017 and 2019 declined in all 5 districts in Limpopo. The highest decline was in Waterberg district (by 11.1%) (Figure 51). The prevalence in Vhembe district was the second lowest prevalence (13.2%) nationally, next to Central Karoo (7.2%).

20.3; 20.9
21.7; 22.3
20.4; 20.3
21.5; 20.4
21.9; 21.1
21.4; 21.9
19.3; 19.9
17.5; 18.6
15.6; 16.5
14.5; 15.4
11.5; 11.1
8.2; 8.0
4.9; 4.8
1.8; 1.7
1.0; 0.9
0.5; 0.3
0.3; 0.2
0
The prevalence reported is for both first and follow-up visit attendees.

Figure 51: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Limpopo

Over the last five surveys, prevalence at district level fluctuated in two of the five (Capricorn, and Mopani) districts in Limpopo (Table 5 and Figure 52). In Vhembe, overall, prevalence showed declining trend between 2013 and 2019 except the sharp rise in prevalence in 2015. In Sekhukhune, prevalence increased from 18.1% in 2013 to 23.1% in 2017, then declined to 15.5% in 2019. In Waterberg, prevalence declined between 2014 and 2019, except the sharp rise in prevalence in 2017. The prevalence decline in Limpopo between 2017 and 2019 was largely driven by the decline in prevalence in Waterberg and Sekhukhune districts.

Table 5: HIV prevalence by district, in the Limpopo province, Antenatal HIV Sentinel Survey, 2013–2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013 %</th>
<th>95% CI</th>
<th>2014 %</th>
<th>95% CI</th>
<th>2015 %</th>
<th>95% CI</th>
<th>2017 %</th>
<th>95% CI</th>
<th>2019 %</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capricorn</td>
<td>21.1</td>
<td>18.0–24.6</td>
<td>23.8</td>
<td>20.6–27.3</td>
<td>21.6</td>
<td>18.5–25.0</td>
<td>22.5</td>
<td>19.8–25.5</td>
<td>19.3</td>
<td>16.8–22.0</td>
</tr>
<tr>
<td>Sekhukhune</td>
<td>18.1</td>
<td>16.1–20.3</td>
<td>19.9</td>
<td>16.4–23.9</td>
<td>22.6</td>
<td>19.1–26.5</td>
<td>23.1</td>
<td>19.4–27.3</td>
<td>15.5</td>
<td>12.6–19.0</td>
</tr>
<tr>
<td>Vhembe</td>
<td>15.0</td>
<td>12.7–17.6</td>
<td>14.0</td>
<td>11.7–16.8</td>
<td>16.8</td>
<td>13.6–20.6</td>
<td>14.0</td>
<td>12.2–16.1</td>
<td>13.2</td>
<td>11.0–15.8</td>
</tr>
<tr>
<td>Waterberg</td>
<td>27.3</td>
<td>22.9–32.2</td>
<td>28.2</td>
<td>23.2–33.7</td>
<td>25.8</td>
<td>22.7–29.1</td>
<td>35.8</td>
<td>33.0–38.8</td>
<td>24.7</td>
<td>22.1–27.5</td>
</tr>
<tr>
<td>Limpopo</td>
<td>20.3</td>
<td>18.9–21.9</td>
<td>20.9</td>
<td>19.2–22.6</td>
<td>21.7</td>
<td>20.1–23.3</td>
<td>23.4</td>
<td>21.8–25.1</td>
<td>19.7</td>
<td>18.4–21.2</td>
</tr>
</tbody>
</table>

The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees.
The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees. The confidence intervals are wide due to small sample size at district level.

Figure 52: HIV prevalence trend by district, Antenatal HIV Sentinel Survey, 2013–2019, Limpopo

PMTCT cascade

Among HIV-positive pregnant women attending ANC service in Limpopo, knowledge of HIV status in the ANC was 97%. Of those who knew their HIV-positive status, 96.1% were on ART (Figure 53). The lowest knowledge of HIV status was in Sekhukhune at 93.2% and the highest was in Waterberg district at 98.6%. ART initiation ranged between 94.5% and 100% in Capricorn and Vhembe districts respectively. Between 2017 and 2019, knowledge of HIV status improved in Capricorn, Vhembe and Waterberg districts; and ART initiation improved in four of the five districts (except Mopani).
Knowledge of HIV-positive status and ART initiation before pregnancy

Knowledge of HIV status before pregnancy among pregnant women was lower than the national average (70.1% in Limpopo vs 72.7% national). However, there was substantial improvement across districts in knowledge of HIV status before pregnancy between 2017 and 2019. In 2019, at district level, the highest knowledge of HIV-positive status before pregnancy was in Capricorn at 75.2% and the lowest was in Sekhukhune district at 65.2% (Figure 54). Of those who knew their HIV-positive status before pregnancy, 90.5% were initiated on ART before pregnancy in 2019, this represented a 1% point decline in ART initiation between 2017 and 2019 (91.5% vs 90.5%). The lowest ART initiation before pregnancy was in Vhembe at 79.3% and the highest was in Waterberg at 93.7%. ART initiation before pregnancy declined between 2017 and 2019 in three districts (except Capricorn and Sekhukhune districts).

Figure 53: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Limpopo

Figure 54: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Limpopo
Planning of pregnancy

Limpopo had the lowest prevalence of unintended pregnancy nationally at 43.1% (Figure 55). By district, prevalence of unintended pregnancy ranged from 42.4% in Vhembe to 44.5% in Sekhukhune districts. The prevalence of unintended pregnancy was lower than the national average in all districts. HIV-positive women had lower prevalence of unintended pregnancy compared to HIV-negative women in three districts (Capricorn, Sekhukhune and Vhembe), while in two districts, prevalence (of unintended pregnancy) was higher (Mopani) or equal (Waterberg) between HIV-positive and HIV-negative women. This difference in unintended pregnancy between HIV-negative and HIV-positive women was not statistically significant. In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy ranging between 68% in Waterberg to 82.5% in Sekhukhune districts (data not presented in graph). Unintended pregnancy among women in the age group 20–24 years was similar (ranging between 38.9% and 47.4% across districts) to the provincial average (data not presented in graph). Next to adolescent girls, single women and women in a non-cohabiting relationship had higher levels of unintended pregnancy (ranging 51.2%–58.5% and 61.9%–91.7% respectively) compared to married women (<25% in four of the five districts and 38.9% in Sekhukhune district) (data not presented in graph).

The confidence intervals are wide due to small sample size at district level

Figure 55: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Limpopo

Early ANC attendance

Just above two-thirds of participants in Limpopo Province initiated ANC before 20 weeks of gestational age (Figure 56). By district, attendance of ANC before 20 weeks ranged between 63.2% (in Sekhukhune) to 74.6% (in Mopani). Between 4% (in Mopani and Waterberg) and
8.1% (in Sekhukhune) of participants across districts initiated ANC in their third trimester (5.3% provincially) \textit{(data not presented in graph)}. In all districts, the youngest (15–19 years) age group had the lowest attendance of ANC compared to the other age groups. In Waterberg, Capricorn and Vhembe districts, both the youngest (15–19 years) and the oldest (35–49 years) age groups had lower attendance of ANC compared to the other age groups. Women who had unintended pregnancy had lower attendance of ANC (62.5%) compared to women whose pregnancy was intended (70.9%). There was no difference in early attendance of ANC between primigravida and multigravida women.

Figure 56: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Limpopo

Maternal syphilis screening and treatment coverage

Limpopo recorded the lowest maternal syphilis screening coverage nationally at 90.8% in 2019. In the same year, by district, maternal syphilis screening coverage ranged between 88.8% in Mopani to 92% in Vhembe and Waterberg districts. At provincial level maternal syphilis screening declined from 95.5% to 90.8% between 2017 and 2019 (Figure 57). Maternal syphilis screening coverage declined in all districts between 2017 and 2019.
Figure 57: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Limpopo

Of those who had syphilis screening, at provincial level, 0.9% (95% CI: 0.7%–1.3%) were positive for syphilis, 68% were negative, 29.4% were awaiting result and 1.7% results were not in file (Figure 58). Limpopo had the highest pending results nationally. Pending results by district ranged from 24.9% in Mopani to 34.7% in Sekhukhune districts (21.9% and 18.8% of the pending results in Mopani and Sekhukhune districts respectively were for follow-up visit attendees).

Figure 58: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Limpopo

After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in Limpopo among those who had syphilis test result was 1.4% (95% CI:1.0%–1.8%), and this was the lowest provincial syphilis prevalence nationally. By district, the prevalence of syphilis ranged from 0.7% in Mopani to 1.6% in Waterberg and
Capricorn districts (Figure 59). The district level prevalence estimates need to be interpreted with caution as the CIs around these estimates are wide due to small sample size.

![Graph showing syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Limpopo](image)

The confidence intervals are wide due to small sample size at district level

Figure 59: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Limpopo

Of 24 participants who were syphilis positive in Limpopo, 87.3% (21) received at least one dose of treatment for syphilis (Figure 60). All (17, 100%) those who were treated for syphilis (and have data on type of treatment received) were treated with at least one dose of BCG. Type of syphilis treatment data was missing for 19% (4) of participants – these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive BCG treatment, the coverage of BCG drops from 100% to 82.2%. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.

![Graph showing syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Limpopo](image)

Figure 60: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Limpopo
Mpumalanga

Sample size realization and demographic characteristics

In Mpumalanga, 108% (3,186) of the planned sample size was achieved. The lowest sample size realization was in Nkangala district (89%) and the highest was in Gert Sibande district (126%). The distribution of participants by age had similar distribution as the national average with adolescent girls and young women accounting for 41.3% of the sample, while women in the 35 years or older age group accounted for 12.9% of the sample (Figure 61).
The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees.

Figure 62: The HIV epidemic curve among antenatal women, Mpumalanga, 1990–2019, Antenatal HIV Sentinel Survey

At district level, in Nkangala and Ehlanzeni districts, HIV prevalence declined by 3.6% points between 2017 and 2019, while prevalence increased by 0.1% point in Gert Sibande – none of these changes were statistically significant (Figure 63).

Figure 63: Change in district HIV prevalence estimates – 2017–2019, Antenatal HIV Sentinel Survey, Mpumalanga
Between 2013 and 2017, in the Ehlanzeni district, HIV prevalence had an overall increasing trend except the decline observed in 2015. In the same district, in 2019 prevalence declined to its 5 years lowest level at 36.8%. In Gert Sibande district HIV prevalence consistently increased between 2014 and 2019. In Nkangala district, although prevalence had declined between 2013 and 2015, there appear to be no clear trend in recent years (i.e. in 2017 and 2019) (Table 6 and Figure 64).

Table 6: HIV prevalence by district, in the Mpumalanga province, Antenatal HIV Sentinel Survey, 2013–2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2017</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
<tr>
<td>Ehlanzeni</td>
<td>37.6</td>
<td>34.2–41.1</td>
<td>39.2</td>
<td>35.8–42.7</td>
<td>38.5</td>
</tr>
<tr>
<td>Gert Sibande</td>
<td>40.8</td>
<td>36.1–45.6</td>
<td>36.1</td>
<td>32.0–40.4</td>
<td>38.6</td>
</tr>
<tr>
<td>Nkangala</td>
<td>34.4</td>
<td>29.5–39.6</td>
<td>30.0</td>
<td>26.7–33.5</td>
<td>25.1</td>
</tr>
<tr>
<td>Mpumalanga province</td>
<td>37.5</td>
<td>35.1–40.0</td>
<td>35.8</td>
<td>33.7–37.9</td>
<td>34.9</td>
</tr>
</tbody>
</table>

The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees.

Figure 64: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Mpumalanga

The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees. The confidence intervals are wide due to small sample size at district level.

PMTCT cascade

In Mpumalanga, in 2019, knowledge of HIV status was 97.6% among HIV-positive pregnant women attending ANC. Of those who knew their HIV-positive status, 96.1% were on ART at the time of the survey (Figure 65). The lowest knowledge of HIV status was in Nkangala at 96.5% and the highest was in Gert Sibande at 99%. All districts had >95% ART initiation. Both knowledge of HIV status and ART initiation improved in Mpumalanga between 2017 and 2019.
Weighted percentages; HIV+ve: HIV positive; ART – Antiretroviral therapy

Figure 65: Knowledge of HIV-positive status and ART initiation by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Mpumalanga

Knowledge of HIV-positive status and ART initiation before pregnancy

Knowledge of HIV status before pregnancy in the Mpumalanga province was slightly above the national average (73% vs 72.7% national average), and 92.4% of those who knew their HIV status before pregnancy were initiated on ART before pregnancy (Figure 66). By district, the lowest and highest knowledge of HIV-positive status before pregnancy were in Nkangala (68.6%) and Gert Sibande (76.3%) districts respectively. The coverage of ART initiation before pregnancy among those who knew their HIV status was 90.5% in the Nkangala district and 93.2% in Ehlanzeni and Gert Sibande districts. In two of the districts (except in Nkangala), both knowledge of HIV status and ART initiation before pregnancy increased between 2017 and 2019.

Figure 66: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Mpumalanga
Planning of pregnancy

In Mpumalanga the prevalence of unintended pregnancy was below the national average at 47% (Figure 67). By district, the prevalence of unintended pregnancy ranged from 43.3% in Nkangala to 55.3% in Gert Sibande districts. The prevalence of unintended pregnancy was significantly higher among HIV-positive women compared to HIV-negative women in Nkangala district (52% vs 39.3% respectively). In the other two districts, HIV-positive women had a slightly lower prevalence of unintended pregnancy than HIV-negative women. In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy ranging between 64.1% in Nkangala to 76.7% in Ehlanzeni districts. Unintended pregnancy was not higher than the provincial average among young women in the age 20–24 years, except in Ehlanzeni that had a slightly higher unintended pregnancy (at 49.2%) than the provincial average. Single women and women in a non-cohabiting relationship had higher levels of unintended pregnancy (compared to married women) ranging between 62.5% and 94.7%, and 51.5% and 61.4% respectively across districts (data not presented in graph).

The confidence intervals are wide due to small sample size at district level

Figure 67: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga

Early ANC attendance

In Mpumalanga province, ANC attendance before 20 weeks of gestational age was a little above the national average (71.5% vs 70.1% national average) (Figure 68). By district, attendance of ANC before 20 weeks ranged between 62.4% (in Gert Sibande) to 78.2% (in Ehlanzeni). Between 3.6% (in Ehlanzeni) and 7.8% (in Gert Sibande) of participants across districts (5.2% provincially) initiated ANC in their third trimester (data not presented in graph). In two of the districts (except Ehlanzeni district), the youngest (15–19 years) age group had the lowest attendance of ANC before 20 weeks at 51.1% and 57.3% in Gert Sibande and Nkangala districts respectively. In Ehlanzeni district, the oldest age (35–49 years) group had
the lowest attendance of ANC before 20 weeks (at 71.9% compared to the district average of 78.2%). In addition, women who had unintended pregnancy had lower attendance of ANC before 20 weeks (67%) compared to women whose pregnancy was intended (75.9%). There was no difference in early attendance of ANC between primigravida and multigravida women.

![Figure 68](image)

Figure 68: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga

Maternal syphilis screening and treatment coverage

Maternal syphilis screening coverage declined from 96.6% to 93.2% between 2017 and 2019 in Mpumalanga (Figure 69). By districts maternal syphilis screening coverage ranged between 92.2% (in Gert Sibande) to 94.7% (Nkangala). In all districts coverage declined slightly between 2017 and 2019.
Of those who had syphilis screening, at province level, 1.5% (95% CI: 0.9%–2.4%) were positive for syphilis, 73.6% were negative, 22.4% were awaiting results and 2.5% results were not in their file (Figure 70). Pending results ranged from 18.5% in Ehlanzeni to 25.7% in Nkangala districts (between 13.1%–17.3% of pending results across districts were for follow-up visit attendees).

After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in Mpumalanga among those who had syphilis test result was 2.0% (95% CI: 1.2%–3.2%), and this was the third lowest prevalence nationally (next to North West and Limpopo). Prevalence increased by 0.3% points from its level in 2015 (1.7%). Prevalence varied at district level with the lowest prevalence reported in Nkangala at 1.1% and the highest in Gert Sibande at 2.7% (Figure 71). The district level prevalence estimates need to be interpreted with caution as the CIs around these estimates are wide due to small sample size.
Figure 71: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga

Of 40 participants who were syphilis positive and whose syphilis treatment status was reported in Mpumalanga, only 61.5% (24) received at least one dose of treatment for syphilis. Of those treated for syphilis and had type of treatment data reported (21), 73.5% (15) were treated with at least one dose of BCG (Figure 72). Syphilis treatment data was missing for 7% (3) of syphilis positive participants in the province, and type of treatment data was missing for 12.5% (3) of participants treated for syphilis; these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive treatment for syphilis, the coverage of syphilis treatment and treatment with BCG drops from 61.5% to 57.1% and from 73.5% to 64.1% respectively. Mpumalanga had the lowest syphilis treatment coverage. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.
Figure 72: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Mpumalanga

Northern Cape

Sample size realization and demographic characteristics

In Northern Cape, 102% (1,685) of the planned sample size was achieved. The districts with the lowest sample size realization in the province were Pixley Ka Seme and J.T. Gaetsewe districts (at 98% for both) and the district with the highest sample size realization was Namakwa district (110%). Close to half (44.2%) of participants were 15–24 years old and 12.6% were ≥35 years old (Figure 73).

Figure 73: Distribution of survey participants by five-year age group – Northern Cape, Antenatal HIV Sentinel Survey, 2019
HIV prevalence

In the Northern Cape province, the HIV prevalence rate among pregnant women attending ANC clinics appeared to be increasing at a relatively high rate till 2005 in general; thereafter the prevalence dropped to a value of 15.6% in 2006 and started increasing consistently till 2010 as shown in Figure 74. HIV prevalence fluctuated within the range of 16%–20% between 2011 and 2019. HIV prevalence increased from 17.9% to 20.2% between 2017 and 2019.

![Graph showing HIV prevalence](image)

The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees

Figure 74: The HIV epidemic curve among antenatal women, Northern Cape, 1990–2019, Antenatal HIV Sentinel Survey

Figure 75 shows a map of HIV prevalence among antenatal women and a change in HIV prevalence by district in the Northern Cape province between 2017 and 2019. Between 2017 and 2019, HIV prevalence increased by 5.4%, 5.0%, 2.1%, and 1.0% in Namakwa, ZF Mgcawu J. T. Gaetsewe, and Frances Baard districts respectively. HIV prevalence decreased by 0.5% in Pixley Ka Seme district in the same period.
The prevalence reported is for both first and follow-up visit attendees

Figure 75: Change in district HIV prevalence estimates – 2017 to 2019, Antenatal HIV Sentinel Survey, Northern Cape

The level of HIV prevalence among antenatal women varied by district between 2013 and 2019; the highest level of prevalence was observed in Frances Baard district and the lowest level was observed in Namakwa district as shown in Table 7 and Figure 76. On average HIV prevalence appears to be increasing over the last five years in Namakwa. In Frances Baard, overall, the prevalence has increased from its level of 18.2% in 2013 to 24.3% in 2015, however in the last 2 surveys (2017 and 2019) prevalence showed fluctuation. In ZF Mgcawu prevalence increased between 2015 and 2019. In J.T. Gaetsewe and Pixley Ka Seme, prevalence appeared to be fluctuating overtime.

Table 7: HIV prevalence by district in the Northern Cape province, Antenatal HIV Sentinel Survey, 2013 to 2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013</th>
<th>95% CI</th>
<th>2014</th>
<th>95% CI</th>
<th>2015</th>
<th>95% CI</th>
<th>2017</th>
<th>95% CI</th>
<th>2019</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Baard</td>
<td>18.2</td>
<td>14.7–22.3</td>
<td>19.5</td>
<td>14.9–25.6</td>
<td>24.3</td>
<td>20.6–28.3</td>
<td>22.3</td>
<td>18.0–27.2</td>
<td>23.3</td>
<td>19.5–27.6</td>
</tr>
<tr>
<td>J.T. Gaetsewe</td>
<td>23.2</td>
<td>17.0–30.8</td>
<td>18.5</td>
<td>12.5–26.4</td>
<td>21.9</td>
<td>15.1–30.7</td>
<td>18.7</td>
<td>15.3–22.8</td>
<td>20.8</td>
<td>17.8–24.1</td>
</tr>
<tr>
<td>Namakwa</td>
<td>2.3</td>
<td>0.5–9.1</td>
<td>3.6</td>
<td>1.2–10.5</td>
<td>2.9</td>
<td>0.7–11.8</td>
<td>8.5</td>
<td>4.2–16.5</td>
<td>13.9</td>
<td>8.7–21.5</td>
</tr>
<tr>
<td>Pixley Ka Seme</td>
<td>15.1</td>
<td>9.4–23.4</td>
<td>13.6</td>
<td>9.1–19.7</td>
<td>15.8</td>
<td>10.0–23.9</td>
<td>16.7</td>
<td>12.6–21.8</td>
<td>16.2</td>
<td>12.7–20.5</td>
</tr>
</tbody>
</table>
The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees.

The confidence intervals are wide due to small sample size at district level.

Figure 76: HIV prevalence trend by district, 2013–2019, Northern Cape, Antenatal HIV Sentinel Survey

PMTCT cascade

In 2019, knowledge of HIV status among HIV-positive women attending ANC in the Northern Cape Province was 94.4%. Among those who knew their HIV-positive status, 94.6% were on ART (Figure 77). By district, knowledge of HIV status ranged between 69.2% in Namakwa to 96.7% in Frances Baard in 2019. However, there were only 13 HIV-positive participants in Namakwa district. ART initiation ranged from 77.8% in Namakwa to 98% in Pixley Ka Seme. Knowledge of HIV status and ART initiation increased between 2017 and 2019 in four of the five districts (except in Namakwa).
Knowledge of HIV-positive status and ART initiation before pregnancy

In the Northern Cape Province, in 2019, knowledge of HIV status before pregnancy was lower than the national average (71.1% in Northern Cape vs 72.7% nationally); 89% of those who knew their HIV-positive status before pregnancy initiated ART before pregnancy (Figure 78). In the same year, knowledge of HIV status and ART initiation before pregnancy varied by district. Knowledge of HIV status before pregnancy was lower than the national average in all except one district (except Pixley Ka Seme district) and ART initiation before pregnancy was lower than the national average (93.3%) in four of the five districts (except Namakwa). The lowest and highest knowledge of HIV status before pregnancy was reported in Namakwa (30.8%) and Pixley Ka Seme (84%) districts respectively. In three districts (except Pixley Ka Seme and Namakwa districts) both knowledge of HIV status and ART initiation before pregnancy increased between 2017 and 2019.
Planning of pregnancy

In Northern Cape, the prevalence of unintended pregnancy was above the national average (55.2% vs 51.6%) (Figure 79). By district, prevalence of unintended pregnancy ranged from 53.1% in Pixley Ka Seme to 61.9% in Namakwa districts. The prevalence of unintended pregnancy was higher among HIV-positive women compared to HIV-negative women in four of the five districts (except in J.T. Gaetsewe) but the difference was not statistically significant. In the Namakwa district there was >10% difference in the prevalence of unintended pregnancy between HIV-positive (71.4%, 95% CI: 50.2%–86.1%) and HIV-negative women (59.8%, 95% CI: 44.1%–73.6%) but this estimate could have been affected by small sample size as there were only 14 HIV-positive women enrolled in the survey from Namakwa district. In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy ranging between 73.1% in J.T. Gaetsewe to 93.8% in Namakwa districts. Unintended pregnancy was higher among women in the age group 20–24 years (compared to 25–49 years old women) in Pixley Ka Seme and ZF Mgcawu districts (65.2% and 60.5% respectively). Single women and women in a non-cohabiting relationship had higher levels of unintended pregnancy (ranging between 72.2% and 100%, and 62.1% and 67.7% respectively across districts) compared to married women (data not presented in graph).

The confidence intervals are wide due to small sample size at district level

Figure 79: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape

Early ANC attendance

In the Northern Cape province, ANC attendance before 20 weeks of gestational age was a little below the national average (69.7% vs 70.1% national average) (Figure 80). By district, attendance of ANC before 20 weeks ranged between 62.7% (in J.T. Gaetsewe) to 82.7% (in Namakwa). Between 4.0% (in Namakwa) and 8.3% (in ZF Mgcawu) of participants across districts (6.1% provincially) initiated ANC in their third trimester (data not presented in graph). In one district (ZF Mgcawu), women between the ages of 30–34 years and 35–49 years
had the lowest attendance of ANC (at 51.5% and 50% respectively) compared to the other age groups. In Pixley Ka Seme, the youngest (15–19 years) age group had the lowest attendance of ANC at 61%. In the other three districts early attendance of ANC was not substantially different by age group. Women who had unintended pregnancy had lower attendance of ANC before 20 weeks (63.9%) compared to women whose pregnancy was intended (78.6%). Multigravida women had lower (68.3%) attendance of ANC before 20 weeks compared to primigravida women (72.7%).

![Bar chart showing attendance of antenatal care before 20 weeks of gestational age in the 2019 Antenatal HIV Sentinel Survey, Northern Cape.](image)

Figure 80: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape

Maternal syphilis screening and treatment coverage

Maternal syphilis screening coverage was 97.8% in Northern Cape, representing a 1.1% points increase in syphilis screening coverage from the level in 2017 (96.7%) (Figure 81). All districts except Frances Baard had greater than 99% maternal syphilis screening coverage in 2019. In Frances Baard maternal syphilis screening coverage declined from 98.7% to 92.2% between 2017 and 2019.
Figure 81: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Northern Cape

Of those who had syphilis screening, at province level, 3% (95% CI: 2.4%–4.0%) were positive for syphilis, 87.1% were negative, 9.3% were awaiting result and 0.6% results were not in their file (Figure 82). Pending results ranged from 1.3% in Pixley Ka Seme to 18.8% in J.T. Gaetsewe (35.9% of the pending results in J.T. Gaetsewe were for follow-up visit attendees).

Figure 82: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape

After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in Northern Cape among those who had syphilis test result was 3.5% (95% CI: 2.7%–4.4%), and this was the second highest provincial prevalence nationally next to Eastern Cape. Prevalence showed a very small increase (by 0.1% point) from its level in 2015 (3.4%). By district, the prevalence of syphilis ranged from 1.5% in J.T. Gaetsewe to 4.9% in ZF Mgcawu and Pixley Ka Seme (Figure 83). The district level prevalence estimates
need to be interpreted with caution as the CIs around these estimates are wide due to small sample size.

Figure 83: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape

Of 46 participants who were syphilis positive and whose syphilis treatment status was reported in Northern Cape, 93.5% (43) received at least one dose of treatment for syphilis. Of those treated for syphilis and had type of treatment data reported (38), 92.1% (35) were treated with at least one dose of BCG (Figure 84). Syphilis treatment data was missing for 8% (4) of syphilis positive participants in the province, and type of treatment data was missing for 11.6% (5) of participants treated for syphilis; these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive treatment for syphilis, the coverage of syphilis treatment and treatment with BCG drops from 93.5% to 85.9% and from 92.1% to 81.5% respectively. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.
Figure 84: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Northern Cape

North West

Sample size realization and demographic characteristics

In North West, 95% (2,901) of the planned sample size was achieved. Dr Ruth Segomotsi and Bojanala districts had the lowest (82%) and highest (103%) sample size realizations respectively at district level. About two-fifths (40.4%) of participants were 15–24 years old and 12.3% were ≥35 years old (Figure 85).

Figure 85: Distribution of survey participants by five-year age group – North West, Antenatal HIV Sentinel Survey, 2019
HIV prevalence

HIV prevalence among pregnant women attending ANC clinics in the North West province was linearly increasing between 1997 and 2005 except in 2004 where it dropped by 3.2% points (Figure 86). The prevalence dropped by a little less than 2% points between 2005 and 2006. Since 2005 prevalence has been declining slowly starting from 31.0% in 2008 to 26.9% in 2019.

![The HIV epidemic curve among antenatal women, North West, 1990–2019, Antenatal HIV Sentinel Survey](image)

The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees

Figure 86: The HIV epidemic curve among antenatal women, North West, 1990–2019, Antenatal HIV Sentinel Survey

At district level prevalence ranged between 23.1% in Dr Ruth to 31.5% in Bojanala. Figure 87 provides a geographic representation of HIV prevalence and change in HIV prevalence by district in the North West province between 2017 and 2019. The level of HIV prevalence among antenatal women increased by 2.9% points in Bojanala district between 2017 and 2019.
In the same period, prevalence declined (by 7.3% points) in Dr Kenneth Kaunda, (by 1% point) in Ngaka Modiri Molema and (by 0.6% points) in Dr Ruth districts.

The prevalence reported is for both first and follow-up visit attendees

Figure 87: Change in district HIV prevalence estimates, 2017−2019, Antenatal HIV Sentinel Survey, North West

As can be seen in Table 8 and Figure 88, HIV prevalence appear to be higher in Bojanala and Dr Kenneth Kaunda districts (compared to the other districts in the province) between 2013 and 2019. HIV prevalence among antenatal women in Ngaka Modiri Molema district appeared to be declining slowly between 2014 and 2019. There is no clear pattern in prevalence in Dr Kenneth Kaunda, Dr Ruth and Bojanala districts.

Table 8: HIV prevalence by district in the North West province, Antenatal HIV Sentinel Survey, 2013–2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2017</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
<tr>
<td>Bojanala</td>
<td>31.5</td>
<td>28.3–35.0</td>
<td>31.9</td>
<td>28.8–35.3</td>
<td>33.8</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
<tr>
<td>Dr Ruth</td>
<td>23.4</td>
<td>19.0–28.4</td>
<td>22.7</td>
<td>17.7–28.6</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
</tr>
<tr>
<td>Ngaka Modiri Molema</td>
<td>22.3</td>
<td>18.9–26.1</td>
<td>25.1</td>
<td>21.4–29.1</td>
<td>23.9</td>
</tr>
</tbody>
</table>

The prevalence reported is for both first and follow-up visit attendees
<table>
<thead>
<tr>
<th>District</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2017</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Kenneth Kaunda</td>
<td>31.8</td>
<td>28.2</td>
<td>24.3</td>
<td>26.2</td>
<td>29.7</td>
</tr>
<tr>
<td></td>
<td>35.6</td>
<td>36.8</td>
<td>35.9</td>
<td>38.2</td>
<td>38.2</td>
</tr>
<tr>
<td>North West Province</td>
<td>28.2</td>
<td>26.3</td>
<td>26.6</td>
<td>26.8</td>
<td>25.7</td>
</tr>
<tr>
<td></td>
<td>30.2</td>
<td>30.9</td>
<td>31.6</td>
<td>29.8</td>
<td>29.8</td>
</tr>
</tbody>
</table>

The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees. The confidence intervals are wide due to small sample size at district level.

Figure 88: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, North West

PMTCT cascade

In the North West province, 97.9% of HIV-positive pregnant women at ANC knew their HIV status. Of those women who knew their HIV status, 97.2% were initiated on ART (Figure 89). The lowest knowledge of HIV status was in Dr Kenneth Kaunda at 96.8% and the highest was in Ngaka Modiri Molema district at 98.7%. ART initiation ranged between 96.7% and 97.4% in Ngaka Modiri Molema and Bojanala districts respectively. Both knowledge of HIV status and ART initiation increased across districts between 2017 and 2019.
Knowledge of HIV-positive status and ART initiation before pregnancy

Knowledge of HIV status before pregnancy among pregnant women in North West province (73.8%) was slightly higher than the national average (72.7%). ART initiation before pregnancy among women who knew their HIV-positive status before pregnancy (95.7%) was higher than the national average (93.3%) (Figure 90). Knowledge of HIV status before pregnancy among pregnant women was higher than the national average in all districts except in Bojanala district (70.8%). ART initiation before pregnancy was higher than the national average (93.3%) in all districts except in Ngaka Modri Molema (92.4%). Both knowledge of HIV status and ART initiation before pregnancy improved between 2017 and 2019.

Figure 90: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, North West

Denominator for knowledge of HIV-positive status before pregnancy was EIA positives. Denominator for ART initiation before pregnancy was the number of HIV-positive women who were aware of their HIV-positive status before pregnancy.

Weighted percentages. HIV+ve: HIV positive; ART – Antiretroviral therapy.
Planning of pregnancy

In North West the prevalence of unintended pregnancy was similar with the national average (51.5% vs 51.6%) (Figure 91). By district, prevalence of unintended pregnancy ranged from 45.4% in Bojanala to 61.2% in Dr Ruth districts. The prevalence of unintended pregnancy was slightly higher among HIV-positive women compared to HIV-negative women in Ngaka Modiri Molema district (51.8% vs 50.4% respectively). In the other three districts, HIV-positive women had slightly lower prevalence of unintended pregnancy than HIV-negative women. In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy ranging between 70.2% in Ngaka Modiri Molema to 87.1% in Dr Ruth districts. In three districts (except Bojanala), young women in the age group 20–24 years also had a higher level of unintended pregnancy (ranging between 54.8% to 64.9%) compared to women older than 24 years. In all districts, single women and women in a non-cohabiting relationship had higher level of unintended pregnancy (ranging between 54.8% to 92.9% and 53.6% to 67.7% respectively) compared to married women (data not presented in graph).

![Graph showing prevalence of unintended pregnancy by district](image)

The confidence intervals are wide due to small sample size at district level

Figure 91: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, North West

Early ANC attendance

In the North West province, ANC attendance before 20 weeks of gestational age was a little higher than the national average (at 70.4% vs 70.1% nationally) (Figure 92). By district, attendance of ANC before 20 weeks of gestational age ranged between 66.5% (in Bojanala) to 76.5% (in Dr Kenneth Kaunda). Between 2.5% (in Dr Kenneth Kaunda) and 7.6% (in Bojanala) of participants across districts (provincially 5.7%) initiated ANC in their third trimester (data not presented in graph). In Dr Ruth and Dr Kenneth Kaunda districts the oldest age group (35–49 years) had the lowest attendance of ANC (at 57.1% and 66.7% respectively) compared to the other age groups. In Bojanala district, the 30–34 years age group had the lowest attendance of ANC (at 59.1%) compared to the other age groups. In the other districts attendance of ANC
was slightly lower in 15–19 years age group compared to the other age groups. The difference in early attendance of ANC between women whose pregnancy was intended (73.1%) and women whose pregnancy was unintended (68.6%) was modest in the province. Multigravida women had lower (68.1%) attendance of ANC compared to primigravida women (75.1%).

Figure 92: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, North West

Maternal syphilis screening and treatment coverage

North West had the second lowest maternal syphilis screening coverage nationally in 2019 (at 93.1%) (Figure 93). Between 2017 and 2019, syphilis screening coverage declined in all districts except in Bojanala district which showed an increase of syphilis screening coverage by 5.4% points (from 88.6% to 94%).

Figure 93: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, North West
Of those who had syphilis screening, at province level, 1.2% (95% CI: 0.8%–1.7%) were positive for syphilis, 67.3% were negative, 28.8% were awaiting result and 2.7% results were not in their file (Figure 94). Pending results ranged from 25.1% in Ngaka Modiri Molema to 30.6% in Bojanala districts (18.5% and 19.8% of pending results in Ngaka Modiri Molema and Bojanala districts were for follow-up visit attendees).

After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in North West Province among those who had syphilis test result was 1.7% (95% CI: 1.2%–2.5%), and this was the second lowest provincial syphilis prevalence nationally. Syphilis prevalence declined by 0.5% points from the level in 2015 (2.2%). By district, the prevalence of syphilis ranged from 0.7% in Ngaka Modiri Molema to 2.2% in Dr. Kenneth Kaunda (Figure 95). The district level prevalence estimates need to be interpreted with caution as the CIs around these estimates are wide due to small sample size.

The confidence intervals are wide due to small sample size at district level

Figure 94: Maternal syphilis screening test result status by district, in the 2019 Antenatal HIV Sentinel Survey, North West

Figure 95: Syphilis prevalence among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, North West
Of 23 participants who were syphilis positive and whose syphilis treatment status was reported in North West, 96.1% (22) received at least one dose of treatment for syphilis. Of those treated for syphilis and had type of treatment data reported (18), 77.8% (14) were treated with at least one dose of BCG (Figure 96). Syphilis treatment data was missing for 17.9% (5) of syphilis positive participants in the province, and type of treatment data was missing for 18.2% (4) of participants treated for syphilis; these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive treatment for syphilis, the coverage of syphilis treatment and treatment with BCG drops from 96.1% to 79.4% and from 77.8% to 64.5% respectively. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.

Figure 96: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, North West

Western Cape

Sample size realization and demographic characteristics

The total sample size achieved in the Western Cape province was 3 943. Sample size realization was 109%. The highest sample size realization (118%) was in the city of Cape Town Metropolitan Municipality and the lowest sample size realization (98%) was in West Coast district. The largest proportion of participants (38.9%) were in the 15–24 years age group and the lowest was in the age groups ≥35 (11.7%) (Figure 97).
The HIV prevalence rate among pregnant women attending ANC clinics in the Western Cape province had been increasing until 2010; thereafter the prevalence seemed to be stabilizing (around 18%) till 2019 except the sharp drops observed in 2012 and 2017 (Figure 98).

Map of antenatal HIV prevalence and change in antenatal HIV prevalence by district in Western Cape between 2017 and 2019 is shown in Figure 99. Antenatal HIV prevalence has increased by 5.8% and 3.7% between 2017 and 2019 in Eden and West Coast districts respectively. In the same period, a moderate increase has been observed in Cape Town (1.1% points increase) and Cape Winelands (0.8% points increase) districts. In Central Karoo and Overberg districts antenatal HIV prevalence declined by 1.5% and 0.4% points respectively, between 2017 and 2019. None of these changes are statistically significant.
The prevalence reported is for both first and follow-up visit attendees.

Figure 99: Change in district HIV prevalence estimates – 2017 to 2019, Antenatal HIV Sentinel Survey, Western Cape

HIV prevalence among antenatal women varied by district between 2013 and 2019 as shown in Table 9 and Figure 100. HIV prevalence fluctuated around 15% in Cape Winelands between 2013 and 2019. In the same period, in Central Karoo HIV prevalence ranged between 6.9% and 8.7% except in 2014 and 2015 where prevalence was 4.9% and 11.8% respectively. In Cape Town Metro prevalence ranged between 20% and 22% in the last five survey years (2013–2019). Antenatal HIV prevalence overall increased between 2013 and 2019 in Overberg and West Coast districts in the same period.

Table 9: HIV prevalence by district in the Western Cape province, Antenatal HIV Sentinel Survey, 2013 to 2019

<table>
<thead>
<tr>
<th>District</th>
<th>2013</th>
<th>95% CI</th>
<th>2014</th>
<th>95% CI</th>
<th>2015</th>
<th>95% CI</th>
<th>2017</th>
<th>95% CI</th>
<th>2019</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape Winelands</td>
<td>15.0</td>
<td>10.0–22.0</td>
<td>14.8</td>
<td>9.9–21.6</td>
<td>15.2</td>
<td>11.4–19.9</td>
<td>14.2</td>
<td>11.9–16.9</td>
<td>15.0</td>
<td>12.5–17.9</td>
</tr>
<tr>
<td>Central Karoo</td>
<td>6.9</td>
<td>4.4–10.6</td>
<td>4.9</td>
<td>1.5–14.7</td>
<td>11.8</td>
<td>6.9–19.3</td>
<td>8.7</td>
<td>5.6–13.3</td>
<td>7.2</td>
<td>4.9–10.5</td>
</tr>
<tr>
<td>Eden</td>
<td>15.6</td>
<td>10.0–23.5</td>
<td>18.2</td>
<td>12.4–25.6</td>
<td>15.7</td>
<td>10.8–22.4</td>
<td>12.6</td>
<td>9.7–16.1</td>
<td>18.4</td>
<td>15.1–22.4</td>
</tr>
<tr>
<td>Cape Town Metro</td>
<td>21.7</td>
<td>16.6–27.7</td>
<td>21.2</td>
<td>16.6–26.8</td>
<td>21.6</td>
<td>17.8–26.0</td>
<td>20.9</td>
<td>18.5–23.5</td>
<td>22.0</td>
<td>19.7–24.5</td>
</tr>
<tr>
<td>Overberg</td>
<td>13.9</td>
<td>7.4–24.6</td>
<td>15.2</td>
<td>8.8–25.1</td>
<td>19.8</td>
<td>11.4–32.3</td>
<td>23.9</td>
<td>13.2–39.4</td>
<td>23.5</td>
<td>14.6–35.6</td>
</tr>
</tbody>
</table>
The prevalence reported in 2015, 2017 and 2019 is for both first and follow-up visit attendees.

The confidence intervals are wide due to small sample size at district level.

Figure 100: HIV prevalence trend by district, 2013–2019, Antenatal HIV Sentinel Survey, Western Cape

PMTCT cascade

Knowledge of HIV status among HIV-positive pregnant women attending ANC was 94.4%; and 95.7% of women who knew their HIV status were on ART (Figure 101). The lowest knowledge of HIV status was in West Coast at 88.4% and the highest was in Central Karoo district at 100% (but there were only 12 HIV-positive participants in Central Karoo therefore this estimate may be unstable). ART initiation ranged between 93.8% and 100% in Overberg and West Coast districts respectively. Knowledge of HIV status increased in three of the six districts (except West Coast, Overberg and Eden districts) and ART initiation increased in all districts between 2017 and 2019.
Knowledge of HIV-positive status and ART initiation before pregnancy

Knowledge of HIV status before pregnancy among pregnant women was 72.8% in the Western Cape province (Figure 102). Knowledge of HIV status before pregnancy was higher than the national average (72.7%) in four of the six districts (except in Cape Winelands and West Coast). Central Karoo (81.8%) and Eden (75%) districts reported the highest proportion of pregnant women who knew their HIV-positive status before pregnancy. At provincial level, ART initiation before pregnancy among those who knew their HIV status before pregnancy was lower than the national average at 86.9%. At district level, Central Karoo and West Coast districts had the lowest ART initiation before pregnancy at 77.8% and 81.8% respectively. However Central Karoo had a small number of participants who were HIV-positive before pregnancy (n=9) which inflates the CI around this estimate (95% CI: 46.1%-93.5%). The highest ART initiation before pregnancy was in Overberg at 91.7%.
Denominator for knowledge of HIV-positive status before pregnancy was EIA positives. Denominator for ART initiation before pregnancy was the number of HIV-positive women who were aware of their HIV-positive status before pregnancy.

Figure 102: Knowledge of HIV-positive status and ART initiation before pregnancy by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Western Cape

Planning of pregnancy

In Western Cape the prevalence of unintended pregnancy was below the national average at 49.7% (Figure 103). By district, prevalence of unintended pregnancy ranged from 42.1% in Central Karoo to 55.2% in West Coast districts. The prevalence of unintended pregnancy was higher among HIV-positive women compared to HIV-negative women in four districts (except in Cape Town Metro and Cape Winelands), but this difference was not statistically significant.

In all districts, adolescent girls (15–19 years) had the highest level of unintended pregnancy (compared to all other age groups) ranging between 50% in Central Karoo to 82.7% in Cape Winelands districts. Young women (20–24 years) had higher unintended pregnancy (than provincial average) in Cape Town Metro and Cape Winelands districts. Single women and women in a non-cohabiting relationship had a high level of unintended pregnancy ranging between 66.7% to 90.7% and 56.1 and 70.8% (across districts) respectively (*data not presented in graph*).
The confidence intervals are wide due to small sample size at district level.

Figure 103: The prevalence of unintended pregnancy by district, in the 2019 Antenatal HIV Sentinel Survey, Western Cape

Early ANC attendance

The Western Cape province had the highest ANC attendance before 20 weeks of gestational age nationally at 76.9% (Figure 104). By district, attendance of ANC before 20 weeks ranged between 71.4% (in Cape Winelands) to 82.7% (in Central Karoo). Between 3.6% (in West Coast) and 6.9% (in Cape Winelands) of participants across districts (5.7% provincially) initiated ANC in their third trimester (*data not presented in graph*). In the Cape Town Metro, and Cape Winelands districts, the youngest age group (15–19 years) had the lowest attendance of ANC before 20 weeks at 65.2%, and 63.3% respectively compared to the other age groups. In the other four districts attendance of ANC before 20 weeks was not substantially different by age group. At province level, women who had unintended pregnancy had lower attendance of ANC before 20 weeks (74.8%) compared to women whose pregnancy was intended (79.3%). There was no difference in early attendance of ANC between primigravida and multigravida women.

Figure 104: Attendance of antenatal care before 20 weeks of gestational age, in the 2019 Antenatal HIV Sentinel Survey, Western Cape
Maternal syphilis screening and treatment coverage

Maternal syphilis screening coverage was 97.9% in Western Cape, representing an increase of 2.4% points in syphilis screening coverage from the level in 2017 (95.3%) (Figure 105). Syphilis screening coverage increased between 2017 and 2019 in all districts. Except Cape Town Metro which had syphilis screening coverage of 95.4%, all other districts had syphilis screening coverage of >98%.

![Figure 105: Maternal syphilis screening coverage by district, in the 2017 and 2019 Antenatal HIV Sentinel Surveys, Western Cape](image)

Of those who had syphilis screening, at province level, 2.2% (95% CI: 1.9%–2.6%) were positive for syphilis, 96.7% were negative, 0.8% were awaiting result and 0.3% results were not in file (Figure 106). Western Cape had the lowest pending results nationally. Pending results ranged from none in West Coast and Central Karoo to 2.7% in Cape Town.
After excluding the pending results and the results not in file, the prevalence of syphilis (per medical record review data) in Western Cape among those who had syphilis test result was 2.2% (95% CI: 1.9%–2.6%), and this was lower than the national average (2.6%) by 0.4% points. Syphilis prevalence increased by 0.5% points from the level in 2015 (1.7%). By district, the prevalence of syphilis ranged from 0.7% in Central Karoo to 3.7% in Overberg (Figure 107). The district level prevalence estimates need to be interpreted with caution as the CIs around these estimates are wide due to small sample size.

Of 75 participants who were syphilis positive and whose syphilis treatment status was reported in Western Cape, 97.6% (73) received at least one dose of treatment for syphilis. Of those treated for syphilis and had type of treatment data reported (64), 93.6% (60) were treated with at least one dose of BCG (Figure 108). Syphilis treatment data was missing for 8.5% (7) of syphilis positive participants in the province, and type of treatment data was missing for 12.3%
(9) of participants treated for syphilis; these missing data were excluded from the above analysis. If we assume that all missing responses mean that the subjects did not receive treatment for syphilis, the coverage of syphilis treatment and treatment with BCG drops from 97.6% to 89.2% and from 93.6% to 83% respectively. The syphilis treatment estimates need to be interpreted with caution as the sample size is small.

Figure 108: Syphilis treatment cascade among antenatal women, in the 2019 Antenatal HIV Sentinel Survey, Western Cape