

SARS-CoV-2 Sequencing Update **1 December 2021**

Prepared by the National Institute for Communicable Diseases (NICD) of the National Health Laboratory (NHLS) on behalf of the Network for Genomics Surveillance in South Africa (NGS-SA)

Department

cience and Innovation REPUBLIC OF SOUTH AFRICA The genomic data presented here are based on South African SARS-CoV-2 sequence data downloaded from GISAID (www.gisaid.org) on 1 December at 08h48

Data license: https://www.gisaid.org/registration/terms-of-use/

Elbe, S., and Buckland-Merrett, G. (2017) Data, disease and diplomacy: GISAID's innovative contribution to global health. Global Challenges, 1:33-46. DOI: 10.1002/gch2.1018 PMCID: 31565258 Shu, Y., McCauley, J. (2017) GISAID: Global initiative on sharing all influenza data – from vision to reality. EuroSurveillance, 22(13) DOI: 10.2807/1560-7917.ES.2017.22.13.30494 PMCID: PMC5388101

Case data is based on specimen collection date. Cases from <u>https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-epidemiological-brief/</u> Test data from <u>https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-testing-summary/</u>

Number of South African genomes deposited on GISAID, by specimen collection week, 2020 and 2021 (N=23 972*)

*This represents the cleaned, de-duplicated dataset of unique sequences. This dataset will be used for all further figures.

GISAID genomes vs total cases, 2020 and 2021 (N=23 972)

Provincial breakdown of genomes deposited into GISAID 6000 5832 Collected before May 2021 31.8 Cases Collected May 2021 (total 1296) 5500 30 Genomes deposited Collected June 2021 (total 3113) Collected July 2021 (total 4211) 5091 5000 Collected August 2021 (total 2914) Collected September 2021 (total 1663) 4452 Collected October 2021 (total 574) 25 4500 24.4 Collected November 2021 (total 249) 4000 21.3 genomes 20 3500 Percentage 18.6 17.5 17.5 3000 fo 15 Number 2500 2070 2000 9.9 10 1519 8.6 1500 1305 1277 1227 1173 6.3 5.6 5.2 5.3 5.4 1000 5.1 5.2 49 5 3.2 500 26 0 0 EC FS GP LP MP NW WC Unknown EC FS KZN LP NC **KZN** NC GP MP NW WC Province Province

Comparison of total cases versus sequencing per province

All provinces, apart from GP, KZN, NC and WC, have comparable percentage of overall cases and overall sequenced genomes. The majority of November sequencing data is from Gauteng.

Omicron lineage mutation profile

- 45-52 amino acid changes (including deletions) across the whole GENOME
 - 26-32 changes in SPIKE
- Does <u>not possess</u> the RdRp G671S change associated with a decrease in Ct value for Delta variants
- Does possess the Spike Δ69-70, which causes the S-Gene Target Failure (SGTF) and was
 previously seen in the Alpha VOC
- Nucleocapsid mutations not predicted to affect antigen rapid diagnostic tests

Omicron spike mutations compared to other VOC/VOIs

- Multiple changes within the two immunogenic regions in S1 (NTD and RBD)
 - including a three amino acid insertion
- Accumulation of mutations surrounding the furin cleavage site
 - Including combination of N679K and P681H
- Effect of most spike S2 subunit changes have not been defined

Omicron global prevalence

Omicron has been detected in 19 countries across the globe (detections based on GISAID).

Proportion and number of clades by epiweek in South Africa, 2021 (N= 17 315)

Delta dominated South Africa's third wave with >90% frequency in October, with C.1.2 detection remaining <4%. Omicron dominates November sequencing data but sequencing is ongoing to determine its true prevalence.

Prevalence of Variants of Concern (VOC) and Variants of Interest (VOI) in

Surveillance in South Africa

Detection Rates: Beta, Delta, C.1.2 and Omicron

Detection rates of variants being monitored in South Africa

C.1.2 continues to be detected at \leq 4% of sequences in November.

Prevalence of Beta increased in October but has not been detected in November.

Omicron was first detected in South Africa on November 8th and accounts for 74% (n=183/249) of these genomes.

Eastern Cape Province, 2021, n = 1673

Free State Province, 2021, n = 930

Gauteng Province, 2021, n = 4745

KwaZulu-Natal Province, 2021, n = 2134

Limpopo Province, 2021, n = 1133

Mpumalanga Province, 2021, n = 1064

Northern Cape Province, 2021, n = 1202

North West Province, 2021, n = 1152

Western Cape Province, 2021, n = 503

Summary

- New B.1.1.529 (21K) lineage has been designated Variant of Concern Omicron
 - Earliest detection in South Africa: 8 November, Gauteng
 - Omicron dominates November sequencing data at 74% of genomes (n=183/249). Sequencing is ongoing to determine prevalence of Omicron in other provinces.
 - Omicron has now been detected in 19 countries worldwide
 - More information can be found at https://www.nicd.ac.za/frequently-asked-questions-for-the-b-1-1-529-mutated-sars-cov-2-lineage-in-south-africa/
- Delta variant dominated in all provinces until end October
 - The Delta sub-lineages vary by province
- C.1.2 lineage detected in all provinces of South Africa with prevalence of <4% of genomes per month

ABORATONAL HEALTH

University of Stellenbosch & NHLS Tygerberg Virology

Susan Engelbrecht Wolfgang Preiser Gert van Zyl Tongai Maponga Bronwyn Kleinhans Shannon Wilson Karabo Phadu Tania Stander Kamela Mahlakwane Mathilda Claassen Diagnostic laboratory staff

хX

EDCTP

W

MRC

CAPETOWN HVTN

cience & innovation

Science and Virguation REPUBLIC OF SOUTH AFRICA

UKZN-Inkosi Albert Luthuli **Central Hospital**

Dr Khanyi Msomi Dr Kerusha Govender Dr Pravi Moodley Dr Aabida Khan Dr Lili Gounder Dr Kerri Francois Dr Cherise Naicker Dr Joedene Chetty

KWAZULU-NATAL VAKWAZULU-NATALI

Dr Neli Ngcaba Dr Tshepiso Mosito Mr Malcolm Ellapen Mr Kubendran Reddy The COVID-19 Bench team

University of KwaZulu-Natal & Africa Health Research Institute

Tulio de Oliveira Richard Lessels Houriivah Tegally Eduan Wilkinson Jennifer Giandhari Sureshnee Pillav Emmanuel James San

KRISP at UKZN:

National Institute for Communicable Diseases

Centre for HIV and STIs Jinal Bhiman Cathrine Scheepers

NICD Groups

AFRICA CDC

Group

Constantinos Kurt Wibmer Thandeka Moyo Tandile Hermanus Frances Ayres Zanele Molaudzi Bronwen Lambson Tandile Hermanus Mashudu Madzivhandila Prudence Kgagudi Brent Oosthuysen

NICD SARS-CoV-2 Sequencing

Sequencing Core Facility Zamantungwa Khumalo Annie Chan Morne du Plessis

Phillip Senzo Mtshali Mushal Allam Florah Mnyameni

University of Cape Town, NHLS & WCG

health Deservent Hard REPEDUIC OF SOUTH AFRICA

NHLS-UCT

Carolyn Williamson Nei-yuan Hsiao Diana Hardie **Kruger Marais** Stephen Korsman Ziyaad Valley-Omar Annabel Enoch

Robert Wilkinson

Darren Martin

Nicola Mulder

Wendy Burgers

Ntobeko Ntusi

Rageema Joseph

Sean Wasserman

Linda Boloko

UCT, IDM and CIDRI-Africa

Deelan Doolabh Arash Iranzadeh Lynn Tyers Innocent Mudau Nokuzola Mbhele Fezokuhle Khumalo **Thabang Serakge** Bruna Galvão Arghavan Alisoltani (U. California)

Zoonotic arbo and respiratory virus program Centre for Viral Zoonoses Department Medical Virology/ NHLS Tshwane Academic division University of Pretoria

> ZARV research program/UP Marietjie Venter (Head: ZARV) Adriano Mendes (Postdoc) Amy Strydom (Postdoc) Michaela Davis (MSc, intern medical scientist)

NHLS Tshwane Prof Simnikiwe Mayaphi (HOD)

Funders:

9

GIZ/BMBF: African Network for Improved diagnostics and epidemiology of common and emerging infectious agents (ANDEMIA) G7 Global Health fund, Robert Koch Institute, Dr Fabian Leendertz

Centre for Respiratory Diseases & Meningitis Anne von Gottberg Thabo Mohale Daniel Amoako Josie Everatt Boitshoko Mahlangu Noxolo Ntuli Anele Mnguni Amelia Buys Cardia Fourie Noluthando Duma Linda de Gouveia Jackie Kleynhans Penny Moore Nicole Wolter Lynn Morris Sibongile Walaza

Mignon du Plessis Stefano Tempia Mvuyo Makhasi Cheryl Cohen

Stanford Kwenda

Dominique Goedhals

Armand Bester

Martin Myaga

University of the

Free State

UFS

NHLS Division of Virology Sabeehah Vawda Felicity Burt Thokozani Mkhize Diagnostic laboratory staff

Key to Disgnostic Excellence

AMPATH

LABORATORIES

1

PathCare

Vermaak

FIOCRUZ

africa

NHLS Koeleka Mlisana Zinhle Makatini Eugene Elliot Florette K. Treurnicht Kathleen Subramoney Oluwakemi Laguda-Akingba Shareef Abrahams Greta Hoyland Gloria Selabe Elias Bereda

Jeannette Wadula

Hyrax Biosciences Simon Travers

Cape Town HVTN Laboratory Erica Anderson-Nissen Anneta Naidoo

Ndlovu Research **Hugo Tempelman** CJ Umunnakwe

Lancet Allison J. Glass **Raquel Viana**

Ampath Terry Marshall **Cindy van Deventer** Eddie Silberbauer

Pathcare Vermaak Andries Drever Howard Newman **Riaan Writes** Marianne Wolfaardt Warren Lowman

Bridge-the-Gap Raymond Rott

Cytespace Africa Laboratories Christa Viljoen

ARC-OVI Lia Rotherham CAPRISA Salim Abdool Karim Nigel Garret

Additional support and collaborators

UKZN - Big Data Francesco Pettruccione Ilya Sinayskiy

University of Oxford José Lourenço

FioCruz, Brazil Vagner Fonseca Marta Giovanetti Luiz Carlos Junior Alcantara Africa CDC John Nkengasong Sofonias Tessema

Netcare: **Richard Friedland** Craig Murphy Caroline Maslo Liza Sitharam

DSI

Glaudina Loots

SA MRC **Glenda Gray**

South African genomes submitted per submitting lab, 2020 and 2021 (N=23 972)

Submitting labs in South Africa

NGS-SA Labs
CERI: Centre for Epidemic Response and Innovation
KRISP: KZN Research Innovation and Sequencing Platform
NICD: National Institute for
Communicable Diseases
NHLS: National Health Laboratory
Service
SU: Stellenbosch University
UCT: University of Cape Town
UFS: University of the Free State
UP: University of Pretoria

*NGS-SA laboratories

Multiple labs from NGS-SA and collaborating private laboratories are contributing to the sequencing effort.

Variants of Concern (VOC)

WHO label	Pango lineages+	GISAID clade	Nextstrain clade	Additional amino acid changes monitored*	Earliest documented samples	Date of designation
Alpha	B.1.1.7 [#]	GRY	20I (V1)	+S:484K +S:452R	United Kingdom, Sep-2020	18-Dec-2020
Beta	B.1.351	GH/501Y.V2	20H (V2)	+S:L18F	South Africa, May-2020	18-Dec-2020
Gamma	P.1	GR/501Y.V3	20J (V3)	+S:681H	Brazil, Nov-2020	11-Jan-2021
Delta	B.1.617.2§	G/478K.V1	21A	+S:417N	India, Oct-2020	VOI: 4-Apr-2021 VOC: 11-May-2021
Omicron*	B.1.1.529	GR/484A	21K	_	Multiple countries, Nov-2021	VUM: 24-Nov-2021 VOC: 26-Nov-2021

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ accessed 1 December 2021

*Notable spike (S) amino acid changes under monitoring, which are currently reported in a minority of sequenced samples *Includes all descendant lineages.

[#]Includes all Q.* lineages in the PANGO nomenclature system.

[§]Includes all AY.* lineages in the PANGO nomenclature system.

Currently designated Variants of Interest (VOI)

WHO label	Pango [*] lineages	GISAID clade	Nextstrain clade	Earliest documented samples	Date of designation
Lambda	C.37	GR/452Q.V1	21G	Peru, Dec-2020	14-Jun-2021
Mu	B.1.631	GH	21H	Colombia, Jan-2021	30-Aug-2021

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ accessed 1 December 2021

^{*}Includes all descendant lineages.

Submission of routine specimens for sequencing

- representative of multiple geographic regions (provinces/districts/health facilities) from individuals of
 - all ages
 - over as many time periods during the SARS-CoV-2 epidemic in South Africa
- requested that testing laboratories in both the private and public sectors, submit respiratory samples to their closest NGS-SA sequencing laboratory on a routine basis (ideally every week) as follows, depending on the capacity of the testing laboratory:
 - All positives samples should be sent every week (NGS-SA laboratory will perform random sampling as described below) OR
 - A weekly selection of approximately 10%-20% of randomly selected positive samples should be sent every week. Number of selected samples will depend on the size of laboratory and how many other laboratories are drained by the submitting laboratory.

Submission of special interest specimens for sequencing

In addition to routine samples mentioned above, please send specimens separately to above and clearly marked if:

- Suspected vaccine breakthrough (≥14 days after vaccine), especially if hospitalised and clinically severe
- Suspected re-infection (≥90 days after previous episode), especially if hospitalised and clinically severe
- Prolonged shedding with high SARS-CoV-2 viral loads (i.e. Ct values less than 30 for more than 1 month post-primary diagnosis) in immunocompromised individuals
- Possible animal-to-human transmission
- Suspected cases of importation from another country, especially countries known to harbour SARS-CoV-2 variants of concern or countries with little available information
- Clusters of "unusual" cases (e.g., in terms of disease presentation, patient groups affected, etc.)