SARS-CoV-2 Sequencing Update
7 January 2022

Supported by the DSI and the SA MRC
Msmoi N. Mlisana K. et al. Lancet Microbe 2020
The genomic data presented here are based on South African SARS-CoV-2 sequence data downloaded from GISAID (www.gisaid.org) on 7 January at 16h27.

Data license: https://www.gisaid.org/registration/terms-of-use/

Case data is based on specimen collection date. Cases from https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-epidemiological-brief/ Test data from https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-testing-summary/
Number of South African genomes deposited on GISAID, by specimen collection week, 2020 – 2022
(N=26 719*)

Total genomes: 26 719
2020 genomes: 6 462
2021 genomes: 20 257

Sequencing data ending epi week 52 (ending 1 January 2022)
Currently in epi week 1 (ending 8 January 2022)

*This represents the cleaned, de-duplicated dataset of unique sequences. This dataset will be used for all further figures.
All provinces, apart from GP, NC and WC, have comparable percentages of overall cases and overall sequenced genomes.
Omicron sub-lineage spike mutation profiles

BA.1
21K

BA.2
21L

Lacks 69-70del
Not detectable by S-Gene Target Failure

BA.3
21M

Lineage definitions based on https://github.com/cov-lineages/pango-designation/issues/367
Images from https://covdb.stanford.edu/page/mutation-viewer/
Omicron spike mutations compared to other VOC/VOIs

- Multiple changes within the two immunogenic regions in S1 (NTD and RBD)
 - including a three amino acid insertion

- Accumulation of mutations surrounding the furin cleavage site
 - Including combination of N679K and P681H

- Effect of most spike S2 subunit changes have not been defined, but may be linked to immune escape
Mutational profile of Omicron is largely shared amongst all sequences. Low mutation frequencies for N417N, N440K, G446S and N764K are most likely a result of poor coverage due to primer drop off.
Omicron has been detected in 122 countries across the globe (detections based on GISAID).
Delta dominated in South Africa until October at >80%. Omicron dominated November and early December at >95%.
The Delta variant dominated at >80% in October in South Africa, while Omicron was detected at 0.3% (2/768). Omicron dominated in November, at 84% (1141/1367) and continues to dominate in December (99%, 1057/1071).
Detection Rates: Beta, Delta, C.1.2 and Omicron

C.1.2 has been detected at ≤ 4% of sequences monthly since May 2021. Beta prevalence increased slightly in October but has since remained at low levels in November and December. Omicron has been dominant since November (>80% in November, >98% in December).
Free State Province, 2021-2022, n = 1070
Gauteng Province, 2021-2022, n = 5518

The diagram shows the distribution of cases over time, with a focus on specific variants such as Omicron and Delta. The x-axis represents the epiweek, and the y-axis shows the number of cases and the percent of genomes.}

[Diagram showing case distribution and genome percent over epiweeks]
Mpumalanga Province, 2021-2022, n = 1157

NGS-SA
Network for Genomic Surveillance in South Africa
Northern Cape Province, 2021-2022, n = 1377

Graph showing the number of genomes and cases over time in the Northern Cape Province from 2021 to 2022, with a total of 1377 cases.
North West Province, 2021, n = 1300

[Graph showing genomic surveillance data for the North West Province in 2021, with a total of 1300 cases. The graph includes a timeline of cases and a breakdown of different variants such as Omicron (21K), Omicron (21M), Beta (20H.V2), Delta (21A), and Alpha (20L.V1).]
Western Cape Province, 2021-2022, n = 4234

[Graph showing the number of genomes and percent of genomes over time for different variants, labeled with their respective dates and counts.]
Summary

• Variant of Concern Omicron
 • South Africa:
 • Dominated November sequencing data at 83.5% of genomes (n=1141/1367) and December sequencing data at 98.7% of genomes (n=1057/1071)
 • Detected in all provinces
 • BA.1 is dominant in South Africa. BA.2 has been detected at low levels since November 2021 and does not appear to be increasing; however, more sequencing data from recent weeks are needed to confirm this
 • Global:
 • Detected in 122 countries worldwide
 • Split into three lineages based on different mutational profiles: BA.1 (21K), BA.2 (21L), BA.3 (remains in 21M with parent lineage B.1.1.529 as does not meet requirements for new clade)
• Delta variant dominated in all provinces until end October
 • Delta sub-lineages varied by province
• C.1.2 lineage detected in all provinces of South Africa with prevalence of <4% of genomes per month and continues to be detected at low frequency
This project (RIA2020EF-3030) is part of the EDCTP2 programme supported by the European Union.
Zoonotic arbo and respiratory virus program
Centre for Viral Zoonoses
Department Medical Virology/ NHLS Tshwane Academic division
University of Pretoria

ZARV research program/UP
Mariejie Venter (Head: ZARV)
Adriano Mendes (Postdoc)
Amy Strydom (Postdoc)
Michaela Davis (MSc, intern medical scientist)

National Institute for Communicable Diseases
Centre for Respiratory Diseases & Meningitis
Anne von Gottberg
Thabo Mohale
Daniel Amoako
Jodie Everatt
Boitshoko Malahang
Nowolo Ntuli
Anele Munguni
Amelia Buya
Cardia Fourie
Noluthando Duma
Linda de Gouveia
Jackie Kleyhans
Nicolle Wolter
Sibongile Walaza
Mignon du Plessis
Stefano Templa
Mwyo Makasi
Cheryl Cohen

Centre for HIV and STIs
Jinal Bhiman
Catharina Scheckers
Constantinos Kurt Wilbmer
Thandeka Moyo
Tandile Hermanus
Frances Ayres
Zanele Molaudzi
Bronwen Lamson
Tandile Hermanus
Masudhu Madzivhandila
Prudence Kgapudi
Brent Oosthuysen
Penny Moore
Lynn Morris

Sequencing Core Facility
Zamantungwa Khumalo
Annie Chan
Morne du Plessis
Stanford Kwenda
Phillip Senzo Mtshali
Mushal Allam
Floria Myamane
Arshad Ismail

Faculty of Health Sciences
University of Pretoria

Funders:
GIZ/BMBF: African Network for improved diagnostics and epidemiology of common and emerging infectious agents (ANDEMIA)
G7 Global Health fund, Robert Koch Institute, Dr Fabian Leendertz

University of Stellenbosch & NHLS Tygerberg Virology

Dr Khanyi Msomi
Dr Kerusha Govender
Dr Pravi Moodley
Dr Aabida Khan
Dr Lili Gounder
Dr Kerri Francois
Dr Cherise Naicker
Dr Joedene Chetty

University of KwaZulu-Natal & Africa Health Research Institute

Dr Nel Ngaba
Dr Tshegoiso Mosito
Mr Malcolm Ellapen
Mr Kubendran Reddy

The COVID-19 Bench team

Krisp at UKZN:
Tulio de Oliveira
Richard Lessels
Houriyah Tegally
Eduan Wilkinson
Jennifer Giandhari
Sureshnee Pillay
Emmanuel James San

AHRI
Alex Sigal
Sandisele Cele
Wilmie Hanekom

University of Cape Town, NHLS & Western Cape Government

NHLs-UCT
Carolyn Williamson
Nel-yuen Hsiak
Diana Hartle
Kruger Marais
Stephan Korsman
Ziyaad Valley-Omar

WCG-UCT
Mary-Anne Davies
Hamah Hsiay
Andrew Boulie
Masudah Paleker
Theuns Jacteis
Erna Morden

NHLs Greenpoint
Annabel Enoch

NHLs Division of Virology
Sabeelah Yawda
Felicity Burt
Thokozani Mkhize
Diagnostic laboratory staff

UCCT, IDM and CIDRI-Africa
Deelan Doolabht
Arash Iransadeh
Lynn Tyers
Innocent Mudau
Nokuzola Mthbhele
Fezokuhle Khumalo
Thabang Serage
Bruna Galvão
Arghavan Alisoltani
(U. California)

Robert Wilkinson
Darren Martin
Nicola Mulder
Wendy Burgers
Ntobeko Ntuli
Rapessa Joseph
Sean Wasserman
Linda Boiko

Centre for the Free State
Dominique Goodhalts
Armand Bester
Martin Myaga
Peter Mwangi
Emmanuel Ogunbayo
Milton Mogotsi
Makgotsi Maotoana
Luflifya Mohamed

NGS-SA
Network for Genomic Surveillance in South Africa

Funding Bodies:
GIZ/BMBF: African Network for improved diagnostics and epidemiology of common and emerging infectious agents (ANDEMIA)
G7 Global Health fund, Robert Koch Institute, Dr Fabian Leendertz
Additional support and collaborators

NHLS
Koekela Mlisana
Zinhle Makatini
Eugene Elliot
Florette K. Treurnicht
Kathleen Subramoney
Oluwakemi Laguda-Akingba
Shareef Abrahams
Greta Hoyland
Gloria Selabe
Elias Bereda
Jeannette Wadula

Hyrax Biosciences
Simon Travers

Cape Town HVTN Laboratory
Erica Anderson-Nissen
Anneta Naidoo

Ndlovu Research
Hugo Tempelman
CJ Umunnakwe

Lancet
Allison J. Glass
Raquel Viana

Ampath
Terry Marshall
Cindy van Deventer
Eddie Silberbauer

UKZN - Big Data
Francesco Pettruccione
Ilya Sinayskiy

University of Oxford
José Lourenço

Pathcare Vermaak
Andries Dreyer
Howard Newman
Riaan Writes
Marianne Wolfaardt
Warren Lowman

FioCruz, Brazil
Vagner Fonseca
Marta Giovanetti
Luiz Carlos Junior Alcantara

Bridge-the-Gap
Raymond Rott

CAPRISA
Salim Abdool Karim
Nigel Garret

Netcare:
Richard Friedland
Craig Murphy
Caroline Maslo
Liza Sitharam

DSI
Glaudina Loots

SA MRC
Glenda Gray

NHLS
Koeleka Mlisana
Zinhle Makatini
Eugene Elliot
Florette K. Treurnicht
Kathleen Subramoney
Oluwakemi Laguda-Akingba
Shareef Abrahams
Greta Hoyland
Gloria Selabe
Elias Bereda
Jeannette Wadula

Hyrax Biosciences
Simon Travers

Cape Town HVTN Laboratory
Erica Anderson-Nissen
Anneta Naidoo

Ndlovu Research
Hugo Tempelman
CJ Umunnakwe

Lancet
Allison J. Glass
Raquel Viana

Ampath
Terry Marshall
Cindy van Deventer
Eddie Silberbauer

UKZN - Big Data
Francesco Pettruccione
Ilya Sinayskiy

University of Oxford
José Lourenço

Pathcare Vermaak
Andries Dreyer
Howard Newman
Riaan Writes
Marianne Wolfaardt
Warren Lowman

FioCruz, Brazil
Vagner Fonseca
Marta Giovanetti
Luiz Carlos Junior Alcantara

Bridge-the-Gap
Raymond Rott

CAPRISA
Salim Abdool Karim
Nigel Garret

Netcare:
Richard Friedland
Craig Murphy
Caroline Maslo
Liza Sitharam

DSI
Glaudina Loots

SA MRC
Glenda Gray
UKZN-Inkosi Albert Luthuli Central Hospital

Dr Khanyi Msomi
Dr Kerusha Govender
Dr Pravi Moodley
Dr Aabida Khan
Dr Lili Gounder
Dr Kerri Francois
Dr Cherise Naicker
Dr Joedene Chetty
Dr Neli Ngcaba
Dr Tshepiso Mosito
Mr Malcolm Ellapen
Mr Kubendran Reddy
The COVID-19 Bench team

University of KwaZulu-Natal & Africa Health Research Institute

KRISP at UKZN:
Tulio de Oliveira
Richard Lessels
Houriiyah Tegally
Eduan Wilkinson
Jennifer Giandhari
Sureshnee Pillay
Emmanuel James San

AHRI
Alex Sigal
Sandile Cele
Willem Hanekom

University of Stellenbosch & NHLS Tygerberg Virology

Susan Engelbrecht
Wolfgang Preiser
Gert van Zyl
Tongai Maponga
Bronwyn Kleinhans
Shannon Wilson
Karabo Phadu
Tania Stander
Kamela Mahlakwane
Mathilda Claassen
Diagnostic laboratory staff
University of Cape Town, NHLS & Western Cape Government

NHLS-UCT
Carolyn Williamson
Nei-yuan Hsiao
Diana Hardie
Kruger Marais
Stephen Korsman
Ziyaad Valley-Omar

WCG-UCT
Mary-Anne Davies
Hannah Hussey
Andrew Boule
Masudah Paleker
Theuns Jacobs
Erna Morden

NHLS Greenpoint
Annabel Enoch

UCT, IDM and CIDRI-Africa
Deelan Doolabh
Arash Iranzadeh
Lynn Tyers
Innocent Mudau
Nokuzola Mbhele
Fezokuhle Khumalo
Thabang Serakge
Bruna Galvão
Arghavan Alisoltani
(U. California)

University of the Free State

UFS
Dominique Goedhals
Armand Bester
Martin Myaga
Peter Mwangi
Emmanuel Ogunbayo
Milton Mogotsi
Makgotso Maotoana
Lutfiyya Mohamed

NHLS Division of Virology
Sabeehah Vawda
Felicity Burt
Thokozani Mkhize
Diagnostic laboratory staff

Network for Genomic Surveillance in South Africa
National Institute for Communicable Diseases

Centre for HIV and STIs
Jinal Bhiman
Cathrine Scheepers
Constantinos Kurt Wibmer
Thandeka Moyo
Tandile Hermanus
Frances Ayres
Zanele Molaudzi
Bronwen Lamson
Tandile Hermanus
Mashudu Madzivhandila
Prudence Kgagudi
Brent Oosthuysen
Penny Moore
Lynn Morris

Sequencing Core Facility
Zamantungwa Khumalo
Annie Chan
Morne du Plessis
Stanford Kwenda
Phillip Senzo Mtshali
Mushal Allam
Florah Mnyameni
Arshad Ismail

Centre for Respiratory Diseases & Meningitis
Anne von Gottberg
Thabo Mohale
Daniel Amoako
Josie Everatt
Boitshoko Mahlangu
Noxolo Ntuli
Anele Mnguni
Amelia Buys
Cardia Fourie
Noluthando Duma
Linda de Gouveia
Jackie Kleynhans
Nicole Wolter
Sibongile Walaza
Mignon du Plessis
Stefano Tempia
Mvuyo Makhasi
Cheryl Cohen

Sequencing Core Facility
Zamantungwa Khumalo
Annie Chan
Morne du Plessis
Stanford Kwenda
Phillip Senzo Mtshali
Mushal Allam
Florah Mnyameni
Arshad Ismail

NICD Groups
NICD COVID-19 response team
NICD SARS-CoV-2 Sequencing Group

Zoonotic arbo and respiratory virus program
Centre for Viral Zoonoses
Department Medical Virology/ NHLS
Tshwane Academic division
University of Pretoria

ZARV research program/UP
Marietjie Venter (Head: ZARV)
Adriano Mendes (Postdoc)
Amy Strydom (Postdoc)
Michaela Davis (MSc, intern medical scientist)

Funders:
GIZ/BMBF: African Network for Improved diagnostics and epidemiology of common and emerging infectious agents (ANDEMIA)
G7 Global Health fund, Robert Koch Institute, Dr Fabian Leendertz

NHLS Tshwane
Prof Simnikiwe Mayaphi (HOD)
Multiple labs from NGS-SA and collaborating public and private laboratories are contributing to sequencing, both as originating and as submitting (pictured here) laboratories.
Variants of Concern (VOC)

<table>
<thead>
<tr>
<th>WHO label</th>
<th>Pango lineage•</th>
<th>GISAID clade</th>
<th>Nextstrain clade</th>
<th>Additional amino acid changes monitored*</th>
<th>Earliest documented samples</th>
<th>Date of designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>B.1.1.7</td>
<td>GRY</td>
<td>20I (V1)</td>
<td>+S:484K +S:452R</td>
<td>United Kingdom, Sep-2020</td>
<td>18-Dec-2020</td>
</tr>
<tr>
<td>Gamma</td>
<td>P.1</td>
<td>GR/501Y.V3</td>
<td>20J (V3)</td>
<td>+S:681H</td>
<td>Brazil, Nov-2020</td>
<td>11-Jan-2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC: 11-May-2021</td>
<td></td>
</tr>
<tr>
<td>Omicron*</td>
<td>B.1.1.529</td>
<td>GRA</td>
<td>21K, 21L</td>
<td>+S:R346K</td>
<td>Multiple countries, Nov-2021</td>
<td>VUM: 24-Nov-2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC: 26-Nov-2021</td>
<td></td>
</tr>
</tbody>
</table>

* Includes all descendant lineages. See the cov-lineages.org and the Pango network websites for further details.
* See TAG-VE statement issued on 26 November 2021
* Only found in a subset of sequences
Currently designated Variants of Interest (VOI)

<table>
<thead>
<tr>
<th>WHO label</th>
<th>Pango lineage*</th>
<th>GISAID clade</th>
<th>Nextstrain clade</th>
<th>Earliest documented samples</th>
<th>Date of designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda</td>
<td>C.37</td>
<td>GR/452Q.V1</td>
<td>21G</td>
<td>Peru, Dec-2020</td>
<td>14-Jun-2021</td>
</tr>
<tr>
<td>Mu</td>
<td>B.1.631</td>
<td>GH</td>
<td>21H</td>
<td>Colombia, Jan-2021</td>
<td>30-Aug-2021</td>
</tr>
</tbody>
</table>

*Includes all descendant lineages. See the cov-lineages.org and the Pango network websites for further details.
Submission of routine specimens for sequencing

• representative of multiple geographic regions (provinces/districts/health facilities) from individuals of
 • all ages
 • over as many time periods during the SARS-CoV-2 epidemic in South Africa

• requested that testing laboratories in both the private and public sectors, submit respiratory samples to their closest NGS-SA sequencing laboratory on a routine basis (ideally every week) as follows, depending on the capacity of the testing laboratory:
 • All positives samples should be sent every week (NGS-SA laboratory will perform random sampling as described below) OR
 • A weekly selection of approximately 10%-20% of randomly selected positive samples should be sent every week. Number of selected samples will depend on the size of laboratory and how many other laboratories are drained by the submitting laboratory.
Submission of special interest specimens for sequencing

In addition to routine samples mentioned above, please send specimens separately to above and clearly marked if:

• Suspected vaccine breakthrough (≥14 days after vaccine), especially if hospitalised and clinically severe
• Suspected re-infection (≥90 days after previous episode), especially if hospitalised and clinically severe
• Prolonged shedding with high SARS-CoV-2 viral loads (i.e. Ct values less than 30 for more than 1 month post-primary diagnosis) in immunocompromised individuals
• Possible animal-to-human transmission
• Suspected cases of importation from another country, especially countries known to harbour SARS-CoV-2 variants of concern or countries with little available information
• Clusters of “unusual” cases (e.g., in terms of disease presentation, patient groups affected, etc.)