SARS-CoV-2 Sequencing Update
18 March 2022

Supported by the DSI and the SA MRC

Prepared by the National Institute for Communicable Diseases (NICD) of the National Health Laboratory (NHLS) on behalf of the Network for Genomics Surveillance in South Africa (NGS-SA)
The genomic data presented here are based on South African SARS-CoV-2 sequence data downloaded from GISAID (www.gisaid.org) on 18 March 2022 at 08h15.

Data license: https://www.gisaid.org/registration/terms-of-use/

Case data is based on specimen collection date. Cases from https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-epidemiological-brief/

Test data gives weekly percentage testing positive rates, from https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/weekly-testing-summary/
Number of South African genomes deposited on GISAID, by specimen collection week, 2020 – 2022
(N=34 154*)

Total genomes: 34 154
2020 genomes: 6 546
2021 genomes: 24 258
2022 genomes: 3 350

Sequencing data ending epi week 10 (ending 13 March 2022)

Currently in epi week 11 (ending 19 March 2022)

*This represents the cleaned, de-duplicated dataset of unique National and Pneumonia Surveillance sequences. This dataset will be used for all further figures.
All provinces, apart from GP, LP, NC and WC, have comparable percentages of overall cases and overall sequenced genomes.
Delta dominated in South Africa until October at >80%. Omicron has dominated from November onwards.

Percentage and number of clades by epiweek in South Africa, 2021 - 2022 (N=27 608)

Sequencing data ending epi week 10 (ending 12 March 2022)

Currently in epi week 11 (ending 19 March 2022)
Prevalence of Variants of Concern (VOC) and Variants of Interest (VOI) in Jan – Feb 2022

Omicron dominated in January (98.5%, 2544/2583) and February (98.4%, 745/757). BA.2 increased in prevalence throughout January and was dominant in February.
Omicron has been dominant since November (>80% in November, >98% in December, January and February).

BA.2 has increased in frequency, making up 42% of genomes in January and 86% in February.

BA.3 continues to be present at low levels.
South Africa, 2021-2022, n = 27523*

*Excludes sequences missing collection dates, as well as those collected January 1st and 2nd 2021 as they are part of epiweek 53 of 2020.
Eastern Cape Province, 2021-2022, n = 2521

Clade key (bar graph)

Weekly percentage testing positive key (line graph)
Free State Province, 2021-2022, n = 1364

Clade key (bar graph)

Weekly percentage testing positive key (line graph)
Gauteng Province, 2021-2022, n = 7210

Clade key (bar graph)
- Omicron (21B/B.1.1)
- Omicron (21M/B.1.1)
- C.12 (20D)
- Delta (21J)
- Beta (20H.V2)
- Alpha (20I.V1)
- Kappa (21B)
- Eta (21D)
- 20A
- 20B
- 20C
- 20D
- unassigned
- 19A
- 19B

Weekly percentage testing positive key (line graph)
- ≤ 5
- 6 - 10
- 11 - 20
- 21 - 30
- 31 - 40
- 41 - 50
- 51 - 55
KwaZulu-Natal Province, 2021-2022, n = 3270

Clade key (bar graph)

Weekly percentage testing positive key (line graph)
Mpumalanga Province, 2021-2022, n = 1972

Clade key (bar graph)

Weekly percentage testing positive key (line graph)
North West Province, 2021, n = 1799
Summary

• Variant of Concern Omicron
 • Detected in at least 153 countries and dominating globally
 • Split into different lineages based on different mutational profiles. Predominant lineages currently BA.1 (21K), BA.1.1 (21K, BA.1+spike R346K), BA.2 (21L), BA.3 (21M). More lineages are being assigned but defining mutations are not yet available.

• South Africa (detected in all provinces):
 • Dominated December, January and February sequencing data at >98% of genomes
 • While BA.1 was the predominant sub-lineage in December (84%) and January (48%), the proportion of BA.2 increased from 5% in December and 42% in January to 86% in February
 • BA.3 continues to be detected at low levels

• Low frequency of currently and previously circulating variants such as Delta and Beta still detected in recent data
Omicron sub-lineage spike mutation profiles

BA.1
21K

BA.2
21L
Lacks 69-70del
Not detectable by S-Gene Target Failure

BA.3
21M

Lineage definitions based on https://github.com/cov-lineages/pango-designation/issues/367
Images from https://covdb.stanford.edu/page/mutation-viewer/
Omicron spike mutations compared to other VOC/VOIs

- Multiple changes within the two immunogenic regions in S1 (NTD and RBD)
 - including a three amino acid insertion

- Accumulation of mutations surrounding the furin cleavage site
 - Including combination of N679K and P681H

- Effect of most spike S2 subunit changes have not been defined, but may be linked to immune escape
University of Stellenbosch & NHLs Tygerberg Virology

Carien van Niekerk
SUSAN ENGELBRECHT
Wolfgang Preiser
Gert van Zyl
Tongai Maponga
Bronwyn Kleinheins
Shannon Wilson
Karabo Phadu
Tania Stander
Karnela Mathlakwane
Mathilda Claassen
Diagnostic laboratory staff

UKZN-Inkosi Albert Luthuli Central Hospital

Dr Khanyi Msomi
Dr Kerusha Govender
Dr Pravi Moodley
Dr Aabida Khan
Dr Lili Gounder
Dr Kerri Francois
Dr Cherisse Naircker
Dr Joedene Chetty

Dr Neil Ngaba
Dr Tshepiso Motso
Mr Malcolm Ellapan
Mr Kubrendran Reddy
The COVID-19 Bench team

University of KwaZulu-Natal & Africa Health Research Institute

KRISP at UKZN:
Tulio de Oliveira
Richard Lessels
Houriyah Tegally
Eduan Wilkinson
Jennifer Giandhari
Sureshnee Pillay
Emmanuel James San

AHRI
Alex Sigal
Sandle Cele
Willem Hanekom

University of Cape Town, NHLs & Western Cape Government

NHLs UCT
Carolyn Williamson
Net-tye-Hlao
Diana Hartlieb
Kruger Marais
Stephen Korsman
Ziyaad Valley-Omar

WGC-UCT
Mary-Anne Davies
Hannah Hussien
Andrew Boujie
Masudah Paleker
Theuns Jacobs
Elsa Marden

NHLs Groenpoint
Annabel Enoch

Zoonotic arbo and respiratory virus program
Centre for Viral Zoonoses
Department Medical Virology/ NHLs Tshwane Academic division
University of Pretoria

ZARV research program/UP
Marietjie Venter (Head: ZARV)
Adriano Mendes (Postdoc)
Amy Smydrom (Postdoc)
Michaela Davis (MSc, intern medical scientist)
Carien van Niekerk

NHLs Tshwane
Prof Simphiwe Mayaphi (HOD)

Funders:
GIZ/BMBF: African Network for Improved diagnostics and epidemiology of common and emerging infectious agents (ANDEMIA)
G7 Global Health fund, Robert Koch Institute, Dr Fabian Leendertz

National Institute for Communicable Diseases

Centre for Respiratory Diseases & Meningitis
Anne von Gottberg
Thabo Mohale
Daniel Amoako
Josie Everatt
Boitshoko Mahlangu
Nokuphila Ntuli
Anele Mnguni
Amelia Buys
Cardia Fourie
Nolutshando Duma
Linda de Gouveia
Jackie Kleynhans
Nicole Wolter
Sibongile Walaza
Mignon du Plessis
Stefano Tempia
Muvuyo Makhosi
Cheryl Cohen

Centre for HIV and STIs
Jinal Bhiman
Catherine Scheepers
Constantinos Kurt Wibmer
Thandeka Moyo
Tandile Hermanus
Frances Ayres
Zanele Moladzi
Bronwen Lambson
Tandile Hermanus
Mashudu Madzivhanda
Prudence Kagudi
Brent Oosthuysen
Penny Moore
Lynn Morris

Sequencing Core Facility
Zamantungwa Khumalo
Annie Chan
Morne du Plessis
Stanford Kwenda
Philip Serio Mtshali
Mushal Ailam
Florah Mnyameni
Arshad Ismail

University of the Free State

UFS
Dominique Goedhals
Armand Bester
Martin Myaga
Peter Mwangi
Emmanuel Ogunbayo
Milton Mogotsi
Makgotsa Matoano
Luftyia Mohamed

NHLs Division of Virology
Sabeelah Yawda
Felicity Burt
Thokozani Mkhize
Diagnostic laboratory staff

UCT, IDM and CIDRI-Africa
Deelan Doolath
Anesh Iransadh
Lynn Tyers
Innocent Muda
Nokuzola Mthetha
Frekeukile Khumalo
Thabang Serake
Bruna Galvão
Arghavan Alisafatlan (U. California)

Robert Wilkinson
Darren Martin
Nicola Mulder
Wendy Burgers
Nobheko Ntuli
Rapeeza Joseph
Sean Wasserman
Linda Boiko

National Institute for Communicable Diseases

University of the Free State

NGS-SA
Network for Genomic Surveillance in South Africa
Additional support and collaborators

NHLS
Koeleka Mlisana
Zinhle Makatini
Eugene Elliot
Florette K. Treurnicht
Kathleen Subramoney
Oluwakemi Laguda-Akingba
Shareef Abrahams
Greta Hoyland
Gloria Selabe
Elias Bereda
Jeannette Wadula

Hyrax Biosciences
Simon Travers

Cape Town HVTN Laboratory
Erica Anderson-Nissen
Anneta Naidoo

Nkulala Research
Hugo Tempelman
CJ Umunnakwe

Lancet
Allison J. Glass
Raquel Viana

Ampath
Terry Marshall
Cindy van Deventer
Eddie Silberbauer

Pathcare Vermaak
Andries Dreyer
Howard Newman
Riaan Writes
Marianne Wolfaardt
Warren Lowman

Bridge-the-Gap
Raymond Rott

Cytespace Africa Laboratories
Christa Viljoen

ARC-OVI
Lia Rotherham

CAPRISA
Salim Abdool Karim
Nigel Garret

UKZN - Big Data
Francesco Pettruccione
Ilya Sinayskiy

University of Oxford
José Lourenço

FioCruz, Brazil
Vagner Fonseca
Marta Giovanetti
Luiz Carlos Junior Alcantara

Africa CDC
John Nkengasong
Sofonias Tessema

Netcare:
Richard Friedland
Craig Murphy
Caroline Maslo
Liza Sitharam

DSI
Glaudina Loots

SA MRC
Glenda Gray

NHLS
Koeleka Mlisana
Zinhle Makatini
Eugene Elliot
Florette K. Treurnicht
Kathleen Subramoney
Oluwakemi Laguda-Akingba
Shareef Abrahams
Greta Hoyland
Gloria Selabe
Elias Bereda
Jeannette Wadula

Hyrax Biosciences
Simon Travers

Cape Town HVTN Laboratory
Erica Anderson-Nissen
Anneta Naidoo

Nkulala Research
Hugo Tempelman
CJ Umunnakwe

Lancet
Allison J. Glass
Raquel Viana

Ampath
Terry Marshall
Cindy van Deventer
Eddie Silberbauer

Pathcare Vermaak
Andries Dreyer
Howard Newman
Riaan Writes
Marianne Wolfaardt
Warren Lowman

Bridge-the-Gap
Raymond Rott

Cytespace Africa Laboratories
Christa Viljoen

ARC-OVI
Lia Rotherham

CAPRISA
Salim Abdool Karim
Nigel Garret

UKZN - Big Data
Francesco Pettruccione
Ilya Sinayskiy

University of Oxford
José Lourenço

FioCruz, Brazil
Vagner Fonseca
Marta Giovanetti
Luiz Carlos Junior Alcantara

Africa CDC
John Nkengasong
Sofonias Tessema

Netcare:
Richard Friedland
Craig Murphy
Caroline Maslo
Liza Sitharam

DSI
Glaudina Loots

SA MRC
Glenda Gray
Multiple labs from NGS-SA and collaborating public and private laboratories are contributing to sequencing, both as originating and as submitting (pictured here) laboratories.
Currently circulating Variants of Concern (VOC)

<table>
<thead>
<tr>
<th>WHO label</th>
<th>Pango lineage•</th>
<th>GISAID clade</th>
<th>Nextstrain clade</th>
<th>Additional amino acid changes monitored*</th>
<th>Earliest documented samples</th>
<th>Date of designation</th>
</tr>
</thead>
</table>

• Includes all descendant lineages. See the cov-lineages.org and the Pango network websites for further details.

* Only found in a subset of sequences
Previously circulating Variants of Concern

<table>
<thead>
<tr>
<th>WHO label</th>
<th>Pango lineage•</th>
<th>GISAID clade</th>
<th>Nextstrain clade</th>
<th>Earliest documented samples</th>
<th>Date of designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>B.1.1.7</td>
<td>GRY</td>
<td>20I (V1)</td>
<td>United Kingdom, Sep-2020</td>
<td>VOC: 18-Dec-2020 Previous VOC: 09-Mar-2022</td>
</tr>
</tbody>
</table>

• Includes all descendant lineages. See the cov-lineages.org and the Pango network websites for further details.
Submission of routine specimens for sequencing

• representative of multiple geographic regions (provinces/districts/health facilities) from individuals of
 • all ages
 • over as many time periods during the SARS-CoV-2 epidemic in South Africa

• requested that testing laboratories in both the private and public sectors, submit respiratory samples to their closest NGS-SA sequencing laboratory on a routine basis (ideally every week) as follows, depending on the capacity of the testing laboratory:
 • All positives samples should be sent every week (NGS-SA laboratory will perform random sampling as described below) OR
 • A weekly selection of approximately 10%-20% of randomly selected positive samples should be sent every week. Number of selected samples will depend on the size of laboratory and how many other laboratories are drained by the submitting laboratory.
Submission of special interest specimens for sequencing

In addition to routine samples mentioned above, please send specimens separately to above and clearly marked if:

• Suspected vaccine breakthrough (≥14 days after vaccine), especially if hospitalised and clinically severe
• Suspected re-infection (≥90 days after previous episode), especially if hospitalised and clinically severe
• Prolonged shedding with high SARS-CoV-2 viral loads (i.e. Ct values less than 30 for more than 1 month post-primary diagnosis) in immunocompromised individuals
• Possible animal-to-human transmission
• Suspected cases of importation from another country, especially countries known to harbour SARS-CoV-2 variants of concern or countries with little available information
• Clusters of “unusual” cases (e.g., in terms of disease presentation, patient groups affected, etc.)