

WASTEWATER-BASED EPIDEMIOLOGY FOR SARS-CoV-2 SUREVEILLANCE IN SOUTH AFRICA

<u>Detection, quantitation and genomic sequencing at sentinel sites in South Africa, March 2021- May 2022</u> WEEK 17 2022

Co-funded by the Water Research Commission, the Bill and Melinda Gates Foundation and the NICD

Chinwe Iwu-Jaja¹*, Setshaba Taukobong¹*, Said Rachida¹, Nkosenhle Ndlovu¹, Wayne Howard¹, Shelina Moonsamy¹, [named CRDM authors] Gina Pocock³, Leanne Coetzee³, Janet Mans⁴, Lisa Schaefer⁵, Wouter J. Le Roux⁵, Annancietar Gomba⁶, Don Jambo⁶, David Moriah de Villiers⁻, Nadine Lee Lepart⁻, Shaun Groenink⁶, Neil Madgwick⁶, Martie van der Walt¹⁰, Awelani Mutshembele¹⁰, Leanne Pillay¹¹, Faizal Bux¹¹, Isaac Dennis Amoah¹¹, Natacha Berkowitz¹², Jay Bhagwan¹², Melinda Suchard¹,¹⁴, Kerrigan McCarthy♯¹,¹⁵, Mukhlid Yousif♯¹,¹⁶ for the South African Collaborative COVID-19 Environmental Surveillance System (SACCESS) network.

¹Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, South Africa

³Waterlab, (Pty) Ltd, Pretoria

⁴Department of Medical Virology, University of Pretoria

⁵Water Centre, Council for Scientific and Industrial Research (CSIR), Pretoria

⁶National Institute for Occupational Health, a division of the National Health Laboratory Service, Johannesburg

⁷Lumegen Laboratories, (Pty) Ltd, Potchefstroom

⁸ Greenhill Laboratories

⁹Praecautio

¹⁰Tuberculosis Platform, South African Medical Research Council, Pretoria.

¹¹Institute of Wastewater Management, Durban University of Technology

¹²City of Cape Town Health Department

¹³ Water Research Commission, Pretoria

¹⁴Department of Chemical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg

¹⁵School of Public Health, University of the Witwatersrand, Johannesburg

¹⁶Department of Virology, School of Pathology, University of the Witwatersrand, Johannesburg

*joint first authors

#joint last authors

OVERVIEW

This report summarises and interprets findings from detection, quantification and sequencing of SARS-CoV-2 by the National Institute for Communicable Diseases (NICD) Centre for Vaccines and Immunology from influent (untreated) wastewater in 17 wastewater treatment plants (WWTPs) across five South African provinces. The results obtained and interpretations analysis of levels of SARS-CoV-2 in WWTP from 70 additional plants across South Africa were tested by SACCESS partners: the National Institute for Occupational Health (NIOH), Lumegen Laboratories, GreenHill Laboratories, SAMRC-TB Platform (until March 2022) and Praecautio to cover all provinces in South Africa. Levels of SARS-CoV-2 in wastewater correlate with population levels of SARS-CoV-2 over time and indicate the geographic distribution of disease. Variants of SARS-CoV-2 can be identified in wastewater through detection of single-nucleotide polymorphisms (SNPs) that are specific to each variant. These variants are shown to correspond to variants prevalent in clinical cases, across time and place. SARS-CoV-2 is shed from symptomatic and asymptomatic persons in stool but is not transmitted by faecal-oral route nor via wastewater. This report is based on data collected from June 2021 until 26th April 2022 (epidemiological week 17). Results from wastewater testing should be read and interpreted together with testing and genomic reports generated by the Centre for Respiratory Diseases and Meningitis found at https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/

- Part 1 of this report presents methods and results of quantitative testing of wastewater.
- Part 2 of this report presents methods and results from sequencing of SARS-CoV-2 RNA fragments in wastewater.

Generally, SARS-CoV-2 in wastewater are increasing in some wastewater treatment plants across the country, especially in Gauteng, corresponding to the increasing number of clinical cases marking the onset of the 5th wave. Omicron variant is present in wastewater across the country. Detailed analyses are described below.

HIGHLIGHTS - week ending 26th APRIL 2022 (Epi week 17)

SARS-CoV-2 levels in wastewater:

The areas served by the wastewater treatment plants that have been showing high levels of SARS-CoV-2 in the past weeks are beginning to show corresponding increase in clinical cases, highlighting the predictive value of wastewater testing. In Gauteng, the SARS-CoV-2 levels in Daspoort WWTP (Tshwane South) and Rooiwal WWTPs (Tshawane North) have remained high for six and five consecutive weeks respectively. In the city of Johannesburg, the levels at the Goudkoppies WWTP have also remained stable at high levels. Sustained increases (four weeks) were observed in Vlakplaats WWTP in Ekurhuleni South, while a further increase at Hartebeesfontein in Ekurhuleni North, was observed after being stable previous week. The high levels of SARS-CoV-2 at the central WWTP in eThekwini metro, Kwazulu-Natal, have also remained stable. In Bloemfontein sub-district, Free State, the wastewater levels of SARS-CoV-2 have further increased at both Sterkwater and Bloemspruit WWTPs. In Buffalo City Metro, Eastern Cape province, the levels at East Bank WWTP have further increased to while the levels at Mdantsane WWTP have remained stable.

SARS-CoV-2 genomics in wastewater: Sequencing data available up to week 15 show the presence of Omicron variant in all recent samples across South Africa with evidence of the new Omicron subvariant BA.4 present in Gauteng, eThekwini and the Free State. Whilst some mutations associated with the Delta variant were also present, the significance of these remains unclear.

PART 1: Detection and quantification of SARS-CoV-2 in wastewater

Background

The detection and monitoring of SARS-CoV-2 through wastewater was first proposed in April 2020. Initial reports describing the feasibility and practical usefulness of this approach emerged simultaneously from several countries during August 2020. Recent evidence has shown that SARS-CoV-2 can be detected in wastewater prior to the appearance of clinical cases, and longitudinal tracking of SARS-CoV-2 viral load in wastewater correlates with the burden of clinically diagnosed cases. Furthermore, the sequencing of SARS-CoV-2 RNA fragments in wastewater has identified variants of concern as well as mutations not detected in clinical cases.

In South Africa, SARS-CoV-2 epidemiology is monitored through laboratory testing of clinical cases using reverse-transcriptase polymerase chain reaction (RT-PCR) tests and rapid antigen tests, COVID-19 hospital admissions and COVID-19 - related deaths. Laboratory testing data is sent by testing laboratories to the National Institute for Communicable Diseases (NICD) via the DATCOV system. From these data sources, epidemiological indicators including incidence rates of testing and case detection, hospitalisation and death rates are made available to key stakeholders and the general public.

Clinical epidemiology based on reporting of laboratory-confirmed cases of SARS-CoV-2 has limitations. Household transmission studies in South African urban and rural settings have demonstrated that a large proportion of cases are asymptomatic or so mild as not to elicit health-seeking, and that laboratory-confirmed cases likely represent less than 10% of SARS-CoV-2 cases prevalent in a community at any given time. Secondly, there is increasing use of rapid antigen detection tests in clinical settings. Results of these tests may not be reported to surveillance networks. Consequently, laboratory diagnosis is increasingly less representative of the burden of disease.

In November 2020, a network of testing laboratories, which became known as the South African Collaborative COVID-19 Environmental Surveillance System (SACCESS) network, was established in order to support the development of a common testing methodology, identify and address challenges, and share best practices related to qualitative, quantitative and sequencing of SARS-CoV-2 in wastewater. Treatment of wastewater in South Africa is the responsibility of local government. Approximately 1050 wastewater treatment works (WWTPs) are administered by metropolitan councils and local government and treat industrial and domestic waste. SACCESS partners and the NICD have engaged with local government to support sample collection, interpretation and utilisation of the results for public health purposes.

The SACCESS network aims to detect and quantify SARS-CoV-2 in wastewater in urban settings in South Africa, to compare trends, temporal and geographic distribution of SARS-CoV-2 levels in wastewater with trends in clinical epidemiology so as to support the use of wastewater-based epidemiology for COVID-19 outbreak prevention and response activities.

Methods

Outbreak context and clinical case epidemiology

Since the first case of SARS-CoV-2 in South Africa was detected on 3rd March 2020, laboratories in the country have conducted **over 24 million RT-PCR and antigen tests**. Four distinct waves of SARS-CoV-2 infection have occurred so far, peaking in June 2020, December 2020, July 2021, and December 2021 respectively. The fifth wave has just commenced in May 2022. The current de-duplicated and geospatially allocated national line list of laboratory-confirmed cases of SARS-CoV-2 (identified by RT-PCR or antigen test) is provided by the NICD for comparison with results from SARS-CoV-2 testing of wastewater.

Establishment of the laboratory testing network

Commencing in 2018, the NICD had been conducting testing of wastewater for poliovirus as part of the National Department of Health's polio surveillance programme. In 2020, the NICD commenced testing of influent wastewater samples from these 18 sites, including eight in Gauteng Province, two in the City of Cape Town (Western Cape Province), two in Mangaung (Free State Province), two in eThekwini (KwaZulu- Natal Province) and four in Eastern Cape Province (two in Buffalo City Metro and two in Nelson Mandela Metro). Quantitative testing results for these sites are available from week 8 of 2021, onwards.

Additional wastewater plants across all metropolitan areas as well as sentinel site plants in smaller provinces were included from February 2021. From August 2021, quantitative testing was conducted on all specimens submitted to partner laboratories for testing. Presently, samples from 87 WWTPs are being tested for SARS-CoV-2. The supplementary Table 1 at the bottom of the page shows all the data for these plants, including their geographical location, the surrounding suburbs, water service authority, the testing laboratory, and dates testing began in these sites.

SARS-CoV-2 detection and quantitation methodology

The general approach of SARS-CoV-2 detection in wastewater used at all network laboratories is virus concentration, followed by nucleic acid extraction and molecular detection. At the identified wastewater treatment facilities grab or passive samples of influent are collected and transported at <5°C to the testing facility. Table 1 summarises the sample collection, processing and detection methodology used by laboratories involved in the surveillance project. The levels of SARS-CoV-2 in wastewater are reported in copies/mL of wastewater. These values are log-transformed before constructing the graphs.

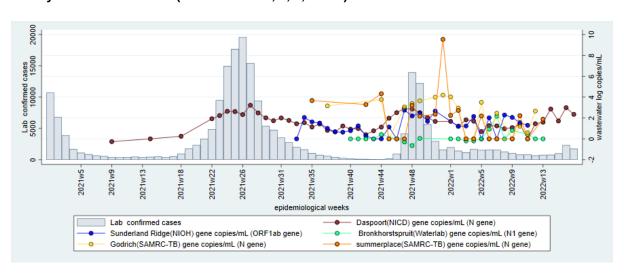
Table 1. Sampling and methodology used by laboratories involved in the NICD-WRC led COVID-19 wastewater surveillance project.

Name of laboratory	Sampling	Virus concentration	Nucleic acid extraction	Molecular analysis	Molecular analysis platform
National Institute for Communicable Diseases (NICD)	Grab	Ultrafiltration (Centricon® Plus-70 centrifugal ultra-filter device)	QIAamp® viral RNA mini kit	RT-qPCR ^a using the Allplex [™] 2019-nCoV Assay and the EDX SARS-CoV-2 standard	7500 Real- Time PCR System (Applied Biosystems
GreenHill Laboratories / Praecautio	Grab	Ultrafiltration (Amicon® Ultra-15 Centrifugal Filter Unit)	Omega Bio- Tek Mag- Bind® Viral DNA/RNA 96 Kit	RT-qPCR using the CDC 2019- Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel	Rotor-Gene Q (Qiagen)
National Institute for Occupational Health (NIOH)	Grab	Skimmed milk flocculation	MagMAX Viral/ Pathogen Nucleic Acid Isolation Kit	RT-qPCR using the TaqPath COVID-19 CE-IVD RT- PCR Kit (Thermo Fisher)	QuantStudio™ 5 Real-Time PCR System 96-well, 0.1 mL, desktop (Applied Biosystems)
Waterlab/University of Pretoria	Grab	Skimmed milk flocculation	QIAamp® Ultrasens® Virus kit	RT-qPCR using the Allplex™ 2019-nCoV Assay and the using the 2019_ nCoV_N positive control plasmid (Integrated DNA Technologies, Inc, Coralville, IA)	QuantStudio™ 5 Real-Time PCR System (Applied Biosystems)
South African Medical Research Council – Tuberculosis	Grab	None – sample is centrifuged then	ZymoBiomics RNA Extraction Kit	RT-qPCR ^a using the Allplex [™] 2019-nCoV	QuantStudio 5 (Applied Biosystems)

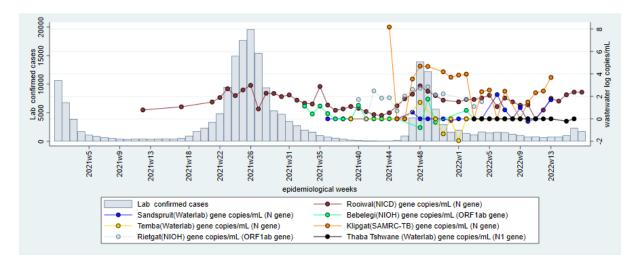
Platform (SAMRC-		supernatant		Assay and	
TB Platform)		analysed		the EDX	
,				SARS-CoV-2	
				standard	
Lumegen	Passive	Passive	MN	RT-qPCR	QuantStudio 5
		sampler and	DNA/RNA	using the	(Applied
		resuspension	pathogen	TaqPath	Biosystems)
		in phosphate	extraction Kit	COVID-19	
		buffered saline		CE-IVD RT-	
				PCR Kit	
				(Thermo	
				Fisher)	
Council for	Grab	Polyethylene	Omega Bio-	RT-qPCR	Qiagen Rotor-
Scientific and		Glycol	tek ENZA	using the	Gene 6000 (5-
Industrial Research		precipitation	total RNA Kit	2019-nCoV	plex) (Qiagen)
(CSIR)			II	CDC EUA Kit	
Durban University	Grab	Ultrafiltration	QIAamp®	RT-ddPCR ^b	QX200
of Technology –		(Centricon®	viral RNA	using CDC	AutoDG
Institute of		Plus-70	mini kit	2019-	Droplet Digital
Wastewater		centrifugal		nCoV_N2	PCR System
Management		ultra-filter		Primers, Fam	(Bio-rad)
		device)		Labelled,	
				double	
				quenched	
				probes	

Interpretation of SARS-CoV-2 levels in wastewater

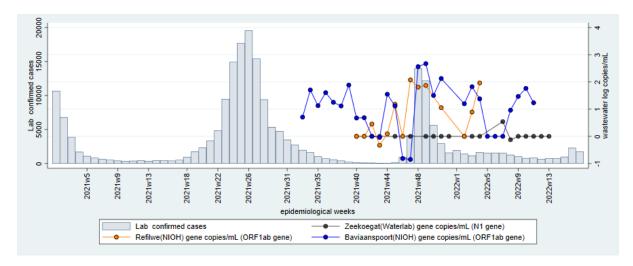
Interpretation of SARS-CoV-2 wastewater levels is evolving. We have elected to use interpretive principles outlined in Table 2 to support public health preparedness and response activities. In general, increasing or decreasing trends in levels are reported based on two or more results, as a single sample that increases or decreases compared with the result from the previous week may represent an outlier. Small changes (up to 0.5 log copies/ml) are not regarded as significant changes unless they form part of a general upward or downward trend. Comparison of results over time when quantification is done by the same laboratory using the same quantitative methodology is meaningful. The use of different methodologies by different laboratories precludes comparison of quantitative results across laboratories.


Table 2. Principles of SARS-CoV-2 detection and quantification on influent samples from wastewater treatment plants and interpretive principles to guide application of test results to support COVID-19 public health responses, South Africa.

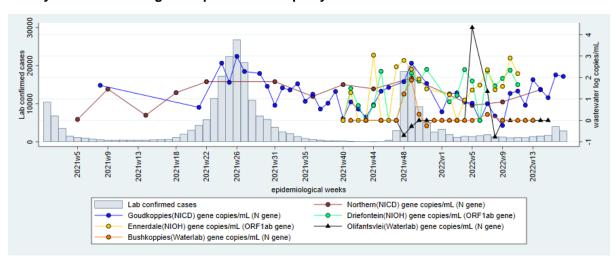
Testing modality	Interpretive principles to support public health responses
Detection of SARS-CoV-2	 When a test result changes from positive to negative, this signifies fewer/no cases in population negative to positive, this indicates the need for increased population awareness and action Qualitative results (presence or absence) are comparable between laboratories
Quantification of SARS-CoV- 2	 The concentration of SARS-CoV-2 at a particular facility may be used to infer the burden of SARS-CoV-2 in the population served by the wastewater treatment facility. Changes in the concentration of SARS-CoV-2 give an indication of whether the burden of disease is increasing or decreasing Quantitative results between laboratories are not comparable. Quantitative results should be interpreted for a single wastewater treatment plant tested by the same laboratory using the same methodology over time.


Results

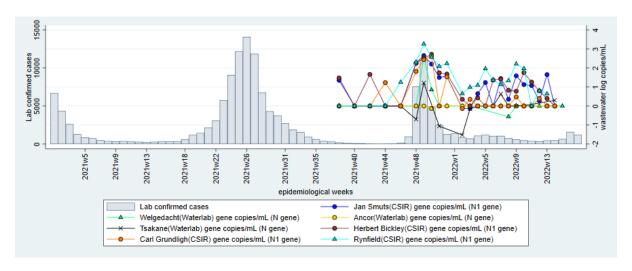
Gauteng Province


A: City of Tshwane South (sub-districts 3, 4, 6, and 7)

B: City of Tshwane North (sub-districts 1 & 2)



C: City of Tshwane North (sub-district 5)


Figures 1A-C. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) for selected wastewater treatment plants (WWTP) and metropolitan areas in Tshwane District Municipality (Tshwane South and North), Gauteng Province during epidemiological weeks 1 of 2021 to week 17 of 2022. The testing laboratory and quantified SARS-CoV-2 gene is named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be done for specimens tested in the same laboratory.

D: City of Johannesburg Metropolitan Municipality

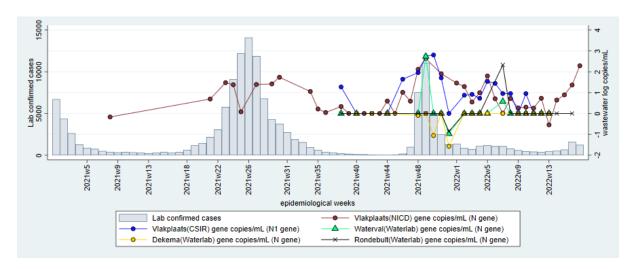
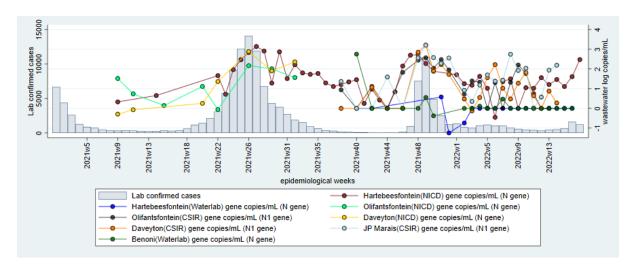
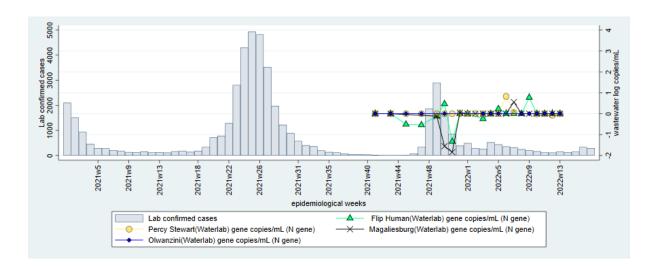


Figure 1D. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) for selected wastewater treatment plants (WWTPs) in the City of Johannesburg Metropolitan Municipality, Gauteng Province during epidemiological weeks 1 of 2021 to week 17 of 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels overtime should only be made for specimens tested in the same laboratory.


E: Ekurhuleni East (sub-districts D, E or E1, E2)

F: Ekurhuleni South (sub-districts A, F or S1, S2)

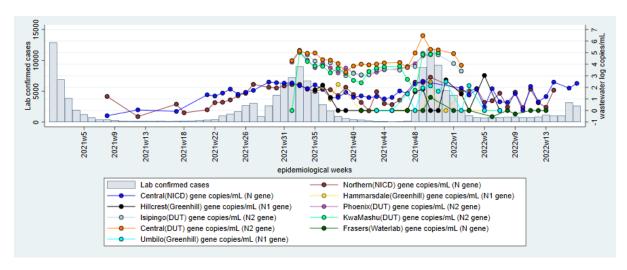


G: Ekurhuleni North (sub-districts B, C or N1, N2)

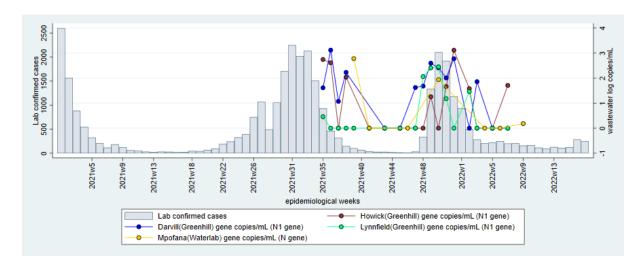
Figures 1E-G. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) for selected wastewater treatment plants (WWTP) in Ekurhuleni Metropolitan Municipality, Gauteng Province during epidemiological weeks 1 of 2021 to week 17 of 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory.

H. West Rand District Municipality

Figure 1H. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) for selected wastewater treatment plants (WWTP) in West Rand District Municipality, Gauteng Province during epidemiological weeks 1 of 2021 to week 17 of 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory.


In Tshwane South, the SARS-CoV-2 levels in Daspoort WWTP have remained high and have been so since past six weeks, with corresponding increases in clinical cases. Similarly, in Tshwane North (subdistrict 1 &2), the levels have consistently remained high in Rooiwal WWTP for five consecutive weeks between weeks 12-17. Also, there were four sustained increases in Klipgat WWTP with week 13 showing levels up to 4 log copies/ml. More recent results are required.

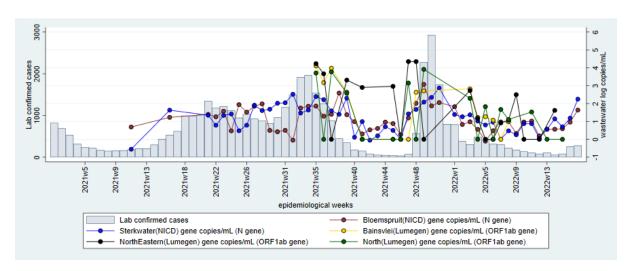
In the city of Johannesburg, the levels at the Goudkoppies WWTP have also remained stable at high levels with corresponding increase in number of clinical cases. The levels in Northern WWTP was high in week 14- more recent results are required. In Ekurhuleni South, the levels in Vlakplaats have consistently increased for over four weeks while in Ekurhuleni North, the levels in Hartebeesfontein WWTP have further increases to over 2 log copies/ml after being stable between 1-2 log copies/ml) between weeks 10-15.


The public health authorities should continue to strengthen surveillance for clinical cases in these areas, promote vaccination and non-pharmaceutical interventions in all areas.

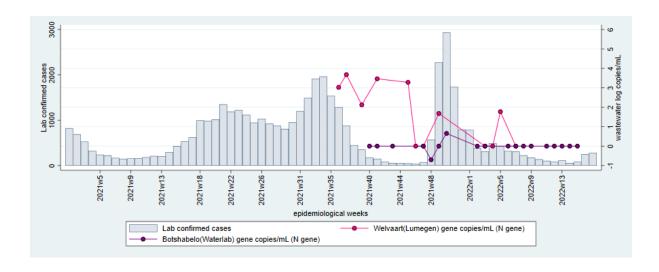
KwaZulu-Natal Province

2A: eThekwini Metropolitan Municipality

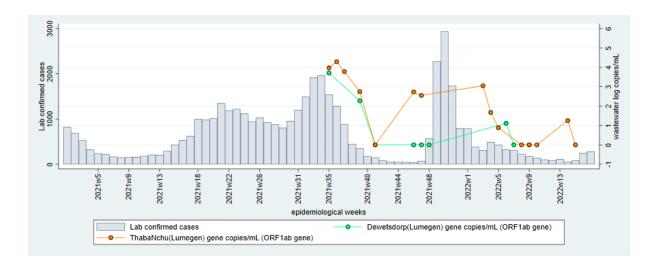
B: uMgungundlovu District Municipality


Figure 2A-B. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) from wastewater treatment plants (WWTP) in eThekwini, (A-B) and uMgungundlovu Metro (C), Kwa-Zulu Natal Province during epidemiological weeks 1-51, 2021 and week 17, 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory.

The high levels of SARS-CoV-2 at the central WWTP in eThekwini metro have remained high and stable in between weeks 14 and 17. An increase of up to 2 log copies was also observed at the Northern


WWTP in week 14, requiring recent results. Therefore, the authorities should continue to promote vaccination and non-pharmaceutical interventions in all areas.

Free State Province- Mangaung


A: Bloemfontein sub-district

B. Botshabelo sub-district

C. Naledi & ThabaNchu sub-districts

Figures 3A-C. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) from wastewater treatment plants (WWTPs) in Mangaung, Free State Province (Bloemfontein, Botshabelo, Naledi and ThabaNchu) during epidemiological weeks 1, 2021 to 17, 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory.

In Bloemfontein sub-district, the wastewater levels of SARS-CoV-2 have further increased to about 2 logcopies at both Sterkwater and Bloemspruit WWTPs with corresponding increase in clinical cases. The public health authorities should continue surveillance for cases, promote vaccination and non-pharmaceutical interventions.

Eastern Cape Province

A: Nelson Mandela Metropolitan Municipality

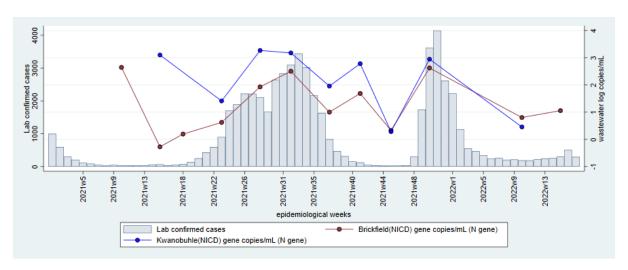


Figure 4A. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) from wastewater treatment plants (WWTPs) in Nelson Mandela Metro, Eastern Cape Province during epidemiological weeks 1, 2021 to 17, 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory

B Buffalo City Metropolitan Municipality

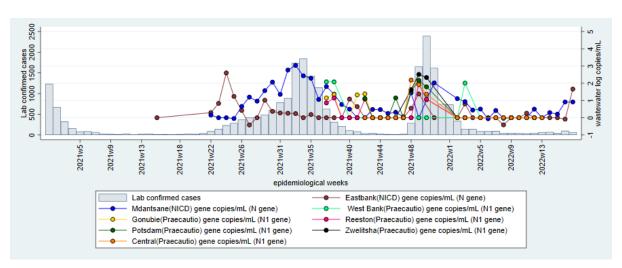
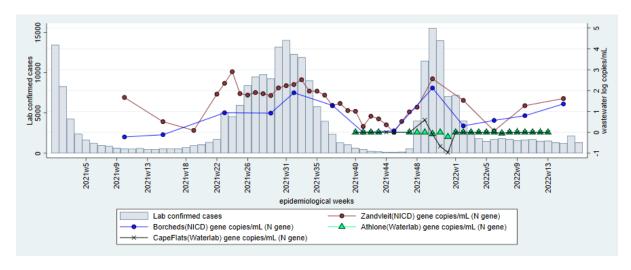



Figure 4B. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) from wastewater treatment plants (WWTPs) in Nelson Mandela Metro, Eastern Cape Province during epidemiological weeks 1, 2021 to 17, 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory

In Buffalo City Metro, the levels at East Bank WWTP have increased to almost 2 log copies/ml, and the levels at Mdantsane WWTP have remained stable at 1 log copy/ml in the past two weeks. In Nelson Mandela Metro, SARS-CoV-2 levels have remained stable at 1logcopy/ml at Brickfield WWTP in week 15 requiring more recent results. The public health authorities should continue to promote vaccination and non-pharmaceutical interventions. Readers are referred to the SAMRC wastewater dashboard for more in-depth data regarding levels of SARS-CoV-2 in wastewater plants in Nelson Mandela Metro (https://www.samrc.ac.za/wbe/).

Western Cape Province

City of Cape Town

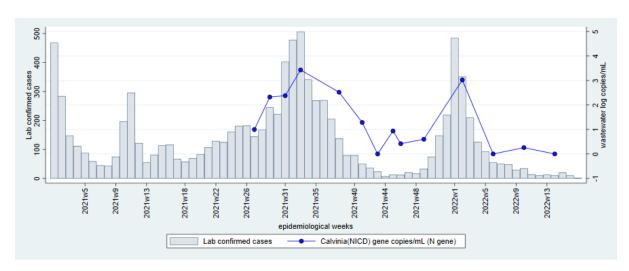
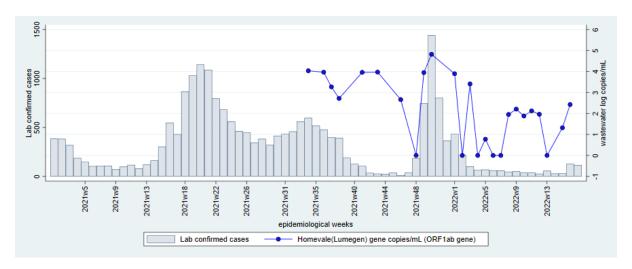


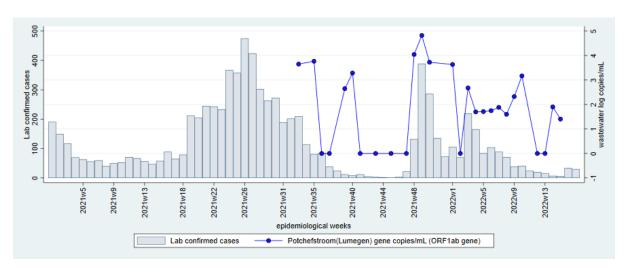
Figure 5. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) from wastewater treatment plants (WWTPs) in the City of Cape Town, Western Cape Province during epidemiological weeks 1, 2021 to 17, 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP.


The SARS-CoV-2 levels in Borcherds Quarry and Zandvleit WWTPs have increased in week 15 requiring recent results. Readers are referred to the SAMRC website, which provides data from additional wastewater treatment plants in the City of Cape Town and other Western Cape districts (https://www.samrc.ac.za/wbe/) to contextualise the results. The public health authorities should continue surveillance for cases, promote vaccination and non-pharmaceutical interventions.

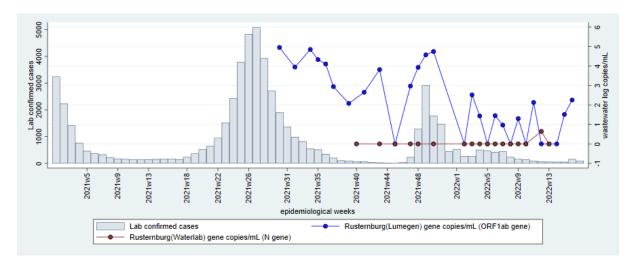
Northern Cape Province

A: Namakwa District Municipality

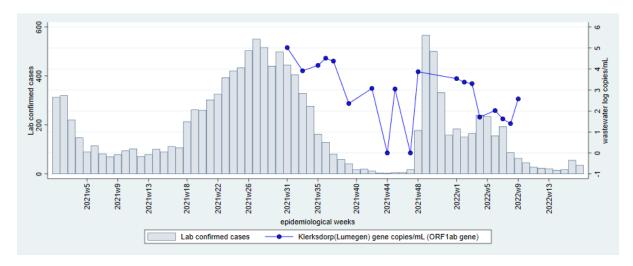
B: Frances Baard District Municipality



Figures 6A-B. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) in wastewater treatment plants (WWTPs) from Calvinia in Namakwa Metro (a) and Kimberly in Frances Baard District (b), Northern Cape Province during epidemiological weeks 1, 2021 to week 17, 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory.

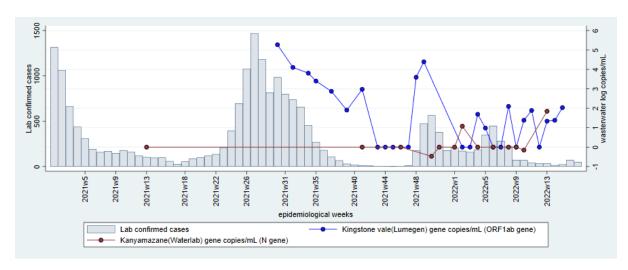

In Homevale WWTP in France Baard sub-district, two successive increases of SARS-CoV-2 levels were noted in weeks 15 and 16 with corresponding increase in clinical cases. The levels at Calvinia WWTP in Namakwa are at zero as of week 14, requiring more recent results The public health authorities should continue surveillance for cases, promote vaccination and non-pharmaceutical interventions.

Northwest Province

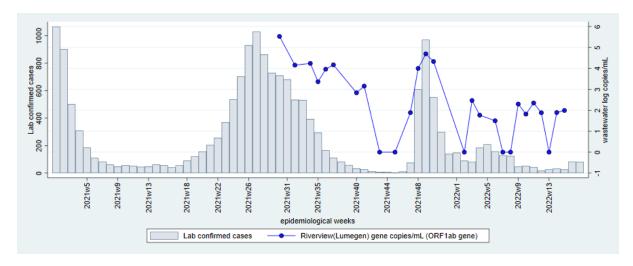

A: JB Marks Local Municipality

B: Bojanala District Municipality

C: City of Matlosana Municipality


Figure 7A-C. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) in wastewater treatment plants (WWTPs) from Potchefstroom, JB Marks District (A) Rustenberg, Bojanala District (B), and City of Matlosana, Northwest Province during epidemiological weeks 1, 2021 to 17, 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory.

In JB Marks, the levels in Potchefstroom decreased from 2log copies/ml in week 14 to 1 logcopy/ml in week 15. However, two successive increases were observed weeks 15 and 16 at Rustenburg WWTP in Bojanala sub-district. More recent results are required in these areas. The public health authorities should continue surveillance for cases, promote vaccination and non-pharmaceutical interventions.


.

Mpumalanga Province

A: Mbombela Local Municipality

B: Emalahleni Local Municipality

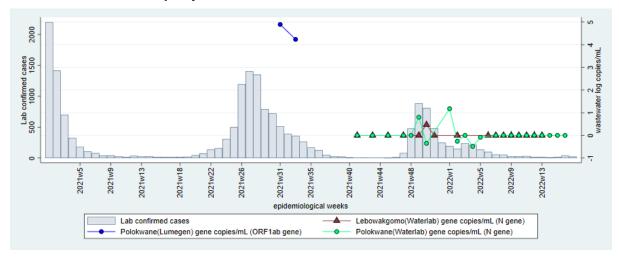


Figure 8A-B: Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) in wastewater treatment plants (WWTPs) from Mbombela and Emalahleni Local Municipality, Mpumalanga Province during epidemiological weeks 1, 2021 to 17, 2022. The testing laboratory and quantified SARS-CoV-2 gene are named in brackets after the name of the WWTP. Note that comparisons of levels over time should only be made for specimens tested in the same laboratory.

The SARS-CoV-2 levels in Mbombela (Kingstonvale WWTP) increased from 1log copy/ml in week 14 to 2 log copies/ml in week 15 while Emalahleni (Riverview WWTP) remained stable at 2 log copies/ml in weeks 14 and 15. The levels at Kanyamazane WWTP in Mbombela increased up to 2 log copies/ml in week 13. More recent results are required in these areas. The public health authorities should continue surveillance for cases, promote vaccination and non-pharmaceutical interventions.

Limpopo Province

Polokwane Local Municipality

Figure 9. Laboratory confirmed cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in log copies/ml of wastewater (coloured lines) in wastewater treatment plants (WWTPs) from Polokwane Local Municipality, Limpopo Province during epidemiological weeks 31-33, 2021.

The levels in Polokwane are difficult to interpret at the moment due to some issues with testing methods. The public health authorities should continue surveillance for cases, promote vaccination and non-pharmaceutical interventions.

Limitations

It is not possible to estimate population burden of disease using wastewater testing of SARS-CoV-2 as sources of variability are multiple, including variation in length and concentration of SARS-CoV-2 excretion by infected persons, variation in degradation rate of viral RNA in wastewater and sampling error. Interpretation of results from quantitative testing of SARS-CoV-2 in wastewater is enhanced when the population served by the wastewater treatment plants is well characterised in terms of SARS-CoV-2 testing rates, health seeking behaviour, hospital admissions and deaths due to SARS-CoV-2, as well as other general indicators of health. Further exploration of the relationship between quantitative SARS-CoV-2 results, local trends in clinical case burden, environmental factors, and test methodology will support the interpretation of observed fluctuations in RNA levels. Quality assessment and interlaboratory comparisons are underway to ensure participating laboratories are providing consistent and comparable results.

PART 2: Results from sequencing of SARS-CoV-2 RNA fragments in wastewater

Background

SARS-CoV-2 has been classified into different variants, that are continually emerging as a result of viral evolution. These variants acquire or lose mutations coding for various epitopes found on key viral proteins which lead to changes in transmissibility dynamics, response to treatment or ability to evade neutralisation by antibodies. WHO classified SARS-CoV-2 variants into variants of concerns (VOCs) and variants of interest (VOIs). VOCs have included Alpha, Beta, Delta, and Gamma, and recently Omicron. Of these, Beta and Omicron were first reported in South Africa. VOIs include Lambda and Mu (https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/).

The Network for Genomics Surveillance of South Africa (NGS-SA) monitors the epidemiology of SARS-CoV-2 variants in PCR-confirmed cases in South Africa. In clinical cases, variant detection is performed using whole genome sequencing and other methods such as real-time PCR. During the first wave (June to August 2020), the Wuhan SARS-CoV-2 strain dominated amongst clinical cases while in the second wave (November 2020 to February 2021), the Beta variant was discovered and was predominant. The third wave (May to September 2021) was characterized by the dominance of the Delta variant and the fourth wave (November 2021 to January 2022) by the Omicron variant.

Several groups have sequenced SARS-CoV-2 from wastewater including groups in the Netherlands which generated near whole genome sequence from wastewater (Lara *et al.*, 2020). In the United States, wastewater sequencing provided comparable results to clinical testing and contained sequences with previously undescribed mutations before they appeared in clinical samples (Crits-Christoph *et al.*, 2021).

Here, we report on SARS-CoV-2 sequences and variants of concern present in wastewater samples collected at sentinel wastewater treatment plants in South African urban metros from week 14 in 2021 to week 15 of 2022.

Methods

Wastewater sites

In 2020, the National Institute for Communicable Diseases commenced with sequencing of influent wastewater samples for SARS-CoV-2 RNA from 15 wastewater treatment plants in metropolitan areas, including five in Gauteng Province, four in Eastern Cape province, two in the City of Cape Town (Western Cape Province), two in Mangaung (Free State Province), two in eThekwini (KwaZulu- Natal Province) (Table 1).

Table 1. Characteristics of wastewater treatment facilities and of samples submitted for SARS-CoV-2 sequencing from these sites, 2021-2022

Province	Metro or District	Plant name	Population size served by the facility	Epidemio- logical week when sequencing started in 2021	# samples submitted for sequencing	# samples yielding useable quality sequences	% samples yielding useable quality sequences
	Buffalo City Metro	East Bank	141000	15	19	3	15.79
Eastern Cape	Wictio	Mdantsane	112900	25	31	8	25.81
Саре	Nelson Mandela	Brickfield	40000	15	9	5	55.56
	Metro	KwaNobuhle	100320	15	8	4	50.00
	Mangaung	Sterkwater	200000	16	40	22	55.00
Free State		Bloemspruit	350000	16	40	18	45.00
	Ekurhuleni Metro	Daveyton	100000	20	5	4	80.00
		Hartebeesfontai n	100000	14	40	25	62.50
		Vlakplaats	200000	21	30	14	46.67
Gauteng	Johannesb urg Metro	Northern	1200000	14	9	5	55.56
		Goudkoppies	500000	21	31	21	67.74
	Tshwane Metro	Rooiwal	unknown	17	41	27	65.85
		Daspoort	unknown	14	40	24	60.00
Kwazulu-	eThekwini Metro	Northern	316425	17	35	22	62.86
Natal		Central	350000	17	36	24	66.67
Western	City of Cape Town Metro	Borcherd's Quarry	380000	15	9	2	22.22
Cape		Zandvliet	460000	15	27	14	51.85
Total					450	242	

Sample collection, RNA extraction, amplification and sequencing

One litre of grab sewage samples were collected and transported at 4°C. Viruses were concentrated from the sample by ultrafiltration (Ikner, Soto-Beltran and Bright, 2011), and RNA was extracted using the QIAamp Viral RNA kit (Qiagen, GmbH, Germany). SARS-CoV-2 was detected by RT-PCR using AllplexTM 2019- nCoV Assay from Seegene kit (Seoul, Korea). RNA was re-extracted from SARS-CoV-2 positive concentrates and subjected to amplicon-based whole genome sequencing using the Sinai protocol with some modifications (Gonzalez-Reiche *et al.*, 2020). Libraries were prepared using the COVIDSeq Kit (Illumina Inc, USA), and sequencing was performed using Illumina COVIDSeq kits as described in (Bhoyar *et al.*, 2021) at the Sequencing Core Facility at the NICD.

Sequence analysis

The ARTIC protocol for sequence analysis (https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html) was used in the Galaxy pipeline for sequence analysis (RC, 2005). Reads were trimmed and filtered according to published criteria (Khailany, Safdar and Ozaslan, 2020). At least 10 reads required

at each nucleotide position for downstream analysis. Mutations present at 10% or less were removed from the analysis. Reads were mapped against the reference genome (Wuhan strain/NC_045512.2) and amino acid variation was analysed. Table 2 illustrates an example of amino acids variation file (https://usegalaxy.eu/).

Table 2: Illustration of amino acids variations. A shows sample ID. B is QC filter, which is quality indicator. C is the number of reads produced for each sample. D is the effect of the mutation detected in the gene. E is the name of the gene where mutation occurred. F is the mutation detected. G is the frequency of the reads in the mutation.

Α	В	С	D	E	F	G
Sample	QC filtre	Number of reads	Mutation effect	Gene	Mutation	Frequency of mutations
ENV-COV-21-285_S337_001.fastq	PASS	12	NON_SYNONYMOUS_CODING	ORF1ab	K790Q	0.833333
ENV-COV-21-285_S337_001.fastq	PASS	644	NON_SYNONYMOUS_CODING	ORF1ab	K798N	0.057453
ENV-COV-21-285_S337_001.fastq	PASS	14	NON_SYNONYMOUS_CODING	ORF1ab	F800L	0.857143
ENV-COV-21-285_S337_001.fastq	PASS	44	SYNONYMOUS_CODING	ORF1ab	G45	0.863636
ENV-COV-21-285_S337_001.fastq	min_af_0.05Xmin_dp_1Xmin_dp_alt_10	44	FRAME_SHIFT	ORF1ab	Y46L?	0.045455
ENV-COV-21-285_S337_001.fastq	PASS	1347	NON_SYNONYMOUS_CODING	ORF1ab	T54P	0.123979
ENV-COV-21-285_S337_001.fastq	PASS	153	SYNONYMOUS_CODING	ORF1ab	T54	0.078431

SARS-CoV-2 in the sewage system is fragmented, and therefore, generation of a consensus sequence for each sample is not meaningful. Therefore, to identify variants at each geographic location, we analysed amino acid variation in each individual sample. For each VOC or VOI, unique single nucleotide polymorphisms were identified by comparing the new lineage with the Wuhan strain in a public database (https://outbreak.info/). Using the amino acid variation data file, we used STATA software (v 17.1) (https://www.stata.com/) to collate spike-gene mutations in a matrix such that the columns represented the amino acid positions of the spike protein and each row recorded all mutations detected in each sample at every locus across the spike gene. We included all mutations, including low frequency mutations and recorded the proportion of reads where that mutation was detected (the 'read frequency') as a percentage of total reads. Using the list of unique mutations for each VOC and VOI in the spike protein region (Table 3) we interrogated the matrix for the presence or absence of known signature mutations in each sample using STATA software (Table 3). As new variants were detected and identified in clinical specimens, we added signature mutations to the STATA code, allowing us to identify the presence of new variants both retrospectively and prospectively.

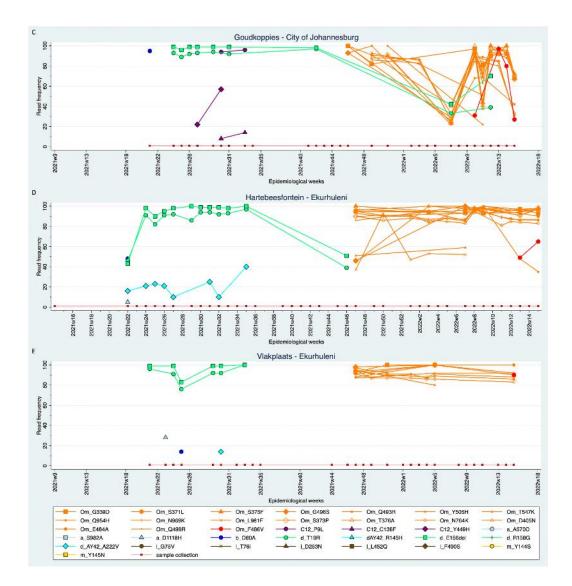
Table 3: List of signature mutations which was used to identify VOC and VOI present in wastewater samples from week 14 in 2021 to week 15 of 2022

Omicron	Alpha	Beta	Delta	C.1.2	Gamma	Lambda	Mu
V213G	A570D	D80A	T19R	P9L	T20N	G75V	Y144S
G339D	S982A		R145H	C136F	P26S	T76I	Y145N
S371L	D1118H		E156del	Y449H	T1027I	D253N	
S373P			R158G			L452Q	
S375F			A222V			F490S	
T376A							
D405N							
F486V*							
Q493R							
G496S							
Y505H							
T547K							
N764K							
N856K							
Q954H							
N969K							
L981F							

^{*}associated with Omicron variant BA.4/5

Results and discussion

Up to the 12th April 2022, a total of **450** wastewater samples from sites listed in Table 1 underwent RNA extraction, amplification and sequencing. Of these **450** samples, **242 (53.77%)** yielded SARS-CoV-2 RNA sequences.


Detection of SARS-CoV-2 variants from wastewater samples using signature mutations analysis

Gauteng province

In the Gauteng province, **120** samples yielded sequencing results displayed in Figure 1, which illustrates how beta variant was present in north and southern Gauteng province in week 21-22, but was replaced by Delta variant across the province from weeks 21 until 34. A variant present only in South Africa, C.1.2 mutations were simultaneously present at Rooiwal, Daspoort and Goudkoppies. During the interwave period (weeks 34-44) most samples submitted for sequencing failed to yield good quality

sequence data, most likely due to low or absent SARS-CoV-2 RNA fragments. The Delta variant was further found to have re-emerged in weeks 3 and 10, 2022, in Daspoort and Rooiwal, respectively and has re-emerged in Goudkoppies, in week 7 and 12, 2022. Omicron variant was first detected in week 46 and by week 47 was found to be present at all plants across the province and continues to be present up to week 13 of 2022. The F486V mutation was found in Rooiwal, Daspoort, Goudkoppies WWTP, Hartebeesfontein and Vlakplaats after Epiweek 10 (see Figure 1 below, represented as a red circle), indicating that the new BA.4, and BA.5 sub-variants of Omicron are circulating in south-west Johannesburg, Ekurhuleni and City of Tshwane.

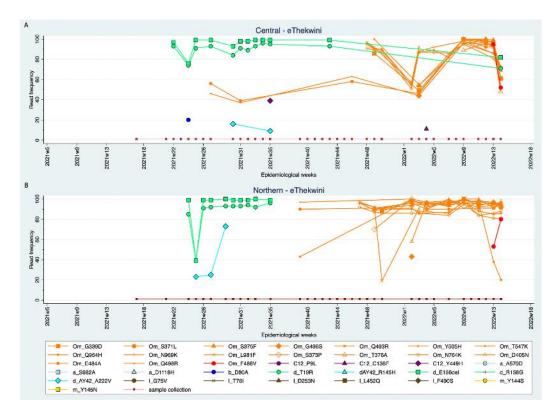


Figure 1: Beta mutation (D80A, dark blue circle). Delta mutations: T19R (green circle), R145H (pale blue triangle), E156del (green square), R158 (green cross), A222V (pale blue diamond). C.1.2 mutations: P9L (purple circle), C136F (purple triangle), Y449H purple diamond. Omicron mutations: G339D (orange square), S371L (orange circle), S375F (orange triangle), G496S (orange diamond), Q493R (orange dot), Y505H (medium point orange circle), T547K (orange small triangle), Q954H (orange small diamond), N969K (orange small line), L981F (orange small x), S373P (orange hollow diamond), T376A (orange hollow triangle), D405N (small orange hollow triangle), E484A (small orange solid circle), Q498R (point orange circle) and F486V (black circle). Dots on the red line shows the timepoints of sample collection, absence of specific coloured lines means the mutation was not detected at that timepoint. A (Rooiwal plant), B (Daspoort plant), C (Goudkoppies plant), D (Hartebeesfontein plant), and E (Vlakplaats plant).

KwaZulu- Natal province

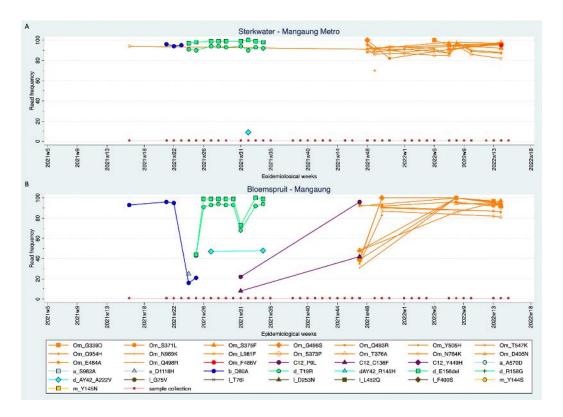

In KwaZulu-Natal province, **46** samples yielded good sequences and were included in Figure 2. Beta variant was detected in a single sample from Central plant in week 24. Delta variant was present in Northern and Central plants from weeks 21 to 35, and was last detected in week 43 at Central plant. As in Gauteng Province, two sub-lineages of Delta and a variant present only in South Africa, C.1.2 were simultaneously present at lower read frequencies from weeks 35, 2021 and 44, 2022 in central eThekwini. During the interwave period (weeks 34-44) most samples submitted for sequencing failed to yield good quality sequence data, most likely due to low or absent SARS-CoV-2 RNA fragments. Omicron variant was first detected in week 39, 2021 in Northern eThekwini and week 48, 2021 in Central eThekwini. Omicron variant continues to be present up to week 13 of 2022. The F486V mutation was found in both central and northern eThekwini from Epiweek 13 (see Figure 2 below, represented as a red circle), indicating that the new BA.4, and BA.5 sub-variants are circulating in eThekwini.

Figure 2: Beta mutation (D80A, dark blue circle). Delta mutations: T19R (green circle), R145H (pale blue triangle), E156del (green square), R158 (green cross), A222V (pale blue diamond). C.1.2 mutations: P9L (purple circle), C136F (purple triangle), Y449H purple diamond. Omicron mutations: G339D (orange square), S371L (orange circle), S375F (orange triangle), G496S (orange diamond), Q493R (orange dot), Y505H (medium point orange circle), T547K (orange small triangle), Q954H (orange small diamond), N969K (orange small line), L981F (orange small x), S373P (orange hollow diamond), T376A (orange hollow triangle), D405N (small orange hollow triangle), E484A (small orange solid circle), Q498R (point orange circle) and F486V (black circle). Dots on the red line shows the timepoints of sample collection, absence of specific coloured lines means the mutation was not detected at that timepoint. A (Northern eThekwini plant) and B (Central eThekwini plant).

Free State province

In Mangaung, Free State province, **40** samples yielded sequencing results displayed in Figure 3. The Beta variant was present until week 23 (Sterkwater plant) and 25 (Bloemspruit) when it was co-detected with Delta variant. As in Gauteng, Delta variant dominated from weeks 23 until 34, along with two Delta sub-lineages. Variant C.1.2 was detected in week 31 in Bloemspruit plant. No samples yield quality sequence data from weeks 35-46. Omicron was first detected in week 48 at both plants. The F486V mutation was found in Sterkwater plant in Epiweek 14 (see Figure 3 below, represented as a red circle).

Figure 3: Beta mutation (D80A, dark blue circle). Delta mutations: T19R (green circle), R145H (pale blue triangle), E156del (green square), R158 (green cross), A222V (pale blue diamond). C.1.2 mutations: P9L (purple circle), C136F (purple triangle), Y449H purple diamond. Omicron mutations: G339D (orange square), S371L (orange circle), S375F (orange triangle), G496S (orange diamond), Q493R (orange dot), Y505H (medium point orange circle), T547K (orange small triangle), Q954H (orange small diamond), N969K (orange small line), L981F (orange small x), S373P (orange hollow diamond), T376A (orange hollow triangle), D405N (small orange hollow triangle), E484A (small orange solid circle), Q498R (small point orange circle) and F486V (black circle). Dots on the red line shows the timepoints of sample collection, absence of specific coloured lines means the mutation was not detected at that timepoint. A (Sterkwater plant) and B (Bloemspruit plant).

Western Cape province

In the Western Cape Province, **16** samples yielded sequencing results displayed in Figure 4. At Zandvliet plant, Delta variant along with sub-lineages described above were detected from week 25-35. Evidence of C1.2 was found in week 22. No samples yield quality sequence data from week 38 to week

46. A single mutation associated with Omicron was observed in week 24 (G339D), whilst other omicron mutations were detected in week 9 and continues until week 15, 2022. At Borcherd's Quarry, the Delta variants and sub-lineages were detected in week 32, no samples yielded quality sequence data from week 34, 2021 to week 2, 2022 and 2 mutations associated with omicron were detected in Epiweek 15, 2022.

Figure 4: Beta mutation (D80A, dark blue circle). Delta mutations: T19R (green circle), R145H (pale blue triangle), E156del (green square), R158 (green cross), A222V (pale blue diamond). C.1.2 mutations: P9L (purple circle), C136F (purple triangle), Y449H purple diamond. Omicron mutations: G339D (orange square), S371L (orange circle), S375F (orange triangle), G496S (orange diamond), Q493R (orange dot), Y505H (medium point orange circle), T547K (orange small triangle), Q954H (orange small diamond), N969K (orange small line), L981F (orange small x), S373P (orange hollow diamond), T376A (orange hollow triangle), D405N (small orange hollow triangle), E484A (small orange solid circle), Q498R (point orange circle) and F486V (black circle). Dots on the red line shows the timepoints of sample collection, absence of specific coloured lines means the mutation was not detected at that timepoint. A (Zandvliet plant) and B (Borcherd's Quarry plant).

Eastern Cape province

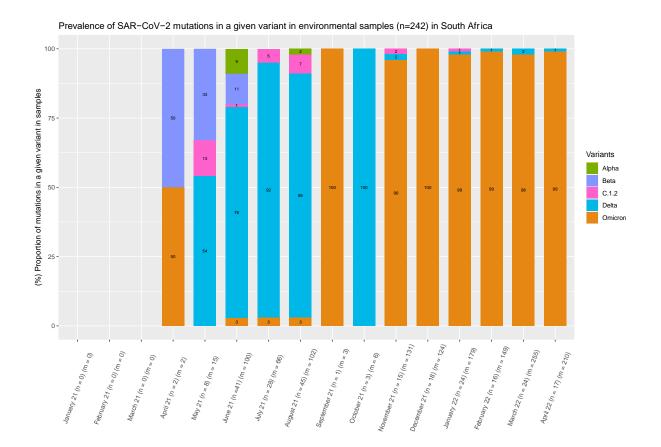

In the Eastern Cape Province, **20** samples yielded sequencing results displayed in figure 5. The Delta variant and sub-lineages were detected in week 30 until week 35 (Mdantsane plant), week 24 until 29 (Brickfield plant), week 28 until 32 (Brickfield) and week 28 until 41 (Kwanobuhle). Omicron variant was first detected in week 48 at the Mdantsane plant, week 50 at the Kwanobuhle and Brickfield plant and week 10, 2022 at the Eastbank plant. No C1.2. variants were detected at all plants. No evidence of the new Omicron sub-lineages has been found in these samples.

Figure 5: Beta mutation (D80A, dark blue circle). Delta mutations: T19R (green circle), R145H (pale blue triangle), E156del (green square), R158 (green cross), A222V (pale blue diamond). C.1.2 mutations: P9L (purple circle), C136F (purple triangle), Y449H purple diamond. Omicron mutations: G339D (orange square), S371L (orange circle), S375F (orange triangle), G496S (orange diamond), Q493R (orange dot), Y505H (medium point orange circle), T547K (orange small triangle), Q954H (orange small diamond), N969K (orange small line), L981F (orange small x), S373P (orange hollow diamond), T376A (orange hollow triangle), D405N (small orange hollow triangle), E484A (small orange solid circle), Q498R (point orange circle) and F486V (black circle). Dots on the red line shows the timepoints of sample collection, absence of specific coloured lines means the mutation was not detected at that timepoint. A (Mdantsane plant), B (Eastbank plant) C (Brickfield plant) and D (Kwanobuhle plant).

The distribution of SARS-CoV-2 from wastewater has progressed from the predominance of Beta variant in January 2021, to Delta variant dominance (June 2021) to Omicron in early 2022 (Figure 6).

Figure 6. The proportion of mutations in a given variant in the environmental samples by month and year (January 2021-March 2022) from all South African provinces. The number of samples processed each month are indicated as n and the number of mutations present in a sample are represented as m *i.e.* n = 10 indicates that mutations were successfully detected 10 samples in May, 2021 and m = 12 indicates that 12 mutations were found in which 13% of the 12, are mutations in the alpha variant.

Limitations

The ability to identify variants in wastewater relies on the identification of single nucleotide polymorphisms found in clinical strains and which are uniquely associated with these variants. We are not yet able to detect new variants. Sequencing of SARS-CoV-2 from wastewater may not yield good quality sequence data when viral concentration in wastewater is low. However, SARS-CoV-2 data from wastewater at South African sentinel sites do show concordance with clinical, epidemiologic curves and sequencing data (not shown) in the respective locations, illustrating the potential of the SACCESS network to provide descriptive epidemiological data pertaining to geographic variation, burden and variants of SARS-CoV-2.

Conclusion

The SACCESS network of laboratories is able to provide population-level data regarding the distribution in time, place and burden of disease of SARS-CoV-2 and to identify currently circulating variants. These data from epidemiologic week 14 demonstrate the increased circulation of SARS-CoV-2 in Gauteng, Mangaung and KwaZulu-Natal (eThekwini) suggestive of a new variant. Sequencing data available up to week 15 shows the presence of Omicron variant in all recent samples across South Africa with evidence of the new Omicron sub-variant BA.4 present in Johannesburg, City of Tshwane, eThekwini and The Free State. The significance of the mutations associated with Delta variant is presently unclear, however these may be present in the new BA4 sub-variant. The quantitative and sequencing results must be read along with the SARS-CoV-2 reports generated by the Centre for Respiratory Diseases and Meningitis found at (https://www.nicd.ac.za/wp-content/uploads/2022/03/Update-of-SA-sequencing-data-from-GISAID-18-Mar-2022_2.pdf).

References

Bhoyar, R. C. *et al.* (2021) 'High throughput detection and genetic epidemiology of SARS-CoV-2 using COVIDSeq next-generation sequencing', *PLOS ONE*, 16(2), p. e0247115. Available at: https://doi.org/10.1371/journal.pone.0247115.

Crits-Christoph, A. *et al.* (2021) 'Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants', *MBio*, 12(1), pp. e02703-20.

Gonzalez-Reiche, A. S. *et al.* (2020) 'Introductions and early spread of SARS-CoV-2 in the New York City area', *Science*, 369(6501), pp. 297–301.

Ikner, L. A., Soto-Beltran, M. and Bright, K. R. (2011) 'New method using a positively charged microporous filter and ultrafiltration for concentration of viruses from tap water', *Applied and Environmental Microbiology*, 77(10), pp. 3500–3506.

Khailany, R. A., Safdar, M. and Ozaslan, M. (2020) 'Genomic characterization of a novel SARS-CoV-2', *Gene reports*, 19, p. 100682.

Lara, R. W. I. et al. (2020) 'Monitoring SARS-CoV-2 circulation and diversity through community wastewater sequencing', medRxiv.

RC, G. B. R. C. H. (2005) 'Burhans R Elnitski L Shah P Zhang Y Blankenberg D Albert I Taylor J 2005 Galaxy: a platform for interactive large-scale genome analysis', *Genome Research*, 15, pp. 1451–1455.

Acknowledgements

- The contributions of local government and wastewater treatment staff to sample collection and transport is acknowledged and appreciated.
- Students support with sample collections and processing the samples : Mr Thoriso Mooa, Ms Unarine Matodzi, Ms Phiwinhlanhla Nkosi SAMRC-TB Platform
- The Water Research Commission is thanked for their vision and support.
- The NICD SARS-CoV-2 epidemiology and IT team members are thanked for sharing district and sub-district case burdens in order to generate graphs. These team members include Andronica Moipone Shonhiwa, Genevie Ntshoe, Joy Ebonwu, Lactatia Motsuku, Liliwe Shuping, Mazvita Muchengeti, Jackie Kleynhans, Gillian Hunt, Victor Odhiambo Olago, Husna

Ismail, Nevashan Govender, Ann Mathews, Vivien Essel, Veerle Msimang, Tendesayi Kufa-Chakezha, Nkengafac Villyen Motaze, Natalie Mayet, Tebogo Mmaborwa Matjokotja, Mzimasi Neti, Tracy Arendse, Teresa Lamola, Itumeleng Matiea, Darren Muganhiri, Babongile Ndlovu, Khuliso Ravhuhali, Emelda Ramutshila, Salaminah Mhlanga, Akhona Mzoneli, Nimesh Naran, Trisha Whitbread, Mpho Moeti, Chidozie Iwu, Eva Mathatha, Fhatuwani Gavhi, Masingita Makamu, Matimba Makhubele, Simbulele Mdleleni, Tsumbedzo Mukange, Trevor Bell, Lincoln Darwin, Fazil McKenna, Ndivhuwo Munava, Muzammil Raza Bano, Themba Ngobeni.

- The NICD Centre for Respiratory Disease and Meningitis are thanked for their assistance in setting up and troubleshooting PCR testing, and ongoing supportive collaboration.
- Staff of SACCESS network laboratories are thanked for their assistance in generating these results.

Supplementary Table: Data for all wastewater treatment plants tested by SACCESS network

S/No	Wastewater plant name	Province	Metro or District	Official subdistrict SD or Local municipality	Subdistrict as represented on the graphs	Water service authority	Suburbs in drainage reticulation	Testing laboratory	Date quantitative testing started
1	Central	Eastern Cape	Buffalo City Local Municipality	Amathole district municipality	No subdistrict	Buffalo City Local Municipality	Wisonia, Dawn, Summer Pride, Amalinda Forest, Haven Hills, Buffalo flats ext, Scenery Park	Praecautio	20-10-2021
2	East Bank	Eastern Cape	Buffalo City Local Municipality	Amathole district municipality	No subdistrict	Buffalo City Local Municipality	Blue Bend, Bonza Bay, Nahoon, Beacon Bay	NICD	13-04-2021
3	Gonubie	Eastern Cape	Buffalo City Local Municipality	Amathole district municipality	No subdistrict	Buffalo City Local Municipality	Sunrise-on-Sea, Gonubie Manor, Thorn Ridge, Cyprus Dale, Bay View, Donny-brook, Gonubie, Gonubie Park	Praecautio	15-09-2021

4	Mdantsane	Eastern Cape	Buffalo City Local Municipality	Amathole district municipality	No subdistrict	Buffalo City Local Municipality	Mdantsane Newlands	NICD	01-06-2021
5	Potsdam	Eastern Cape	Buffalo City Local Municipality	Amathole district municipality	No subdistrict	Buffalo City Local Municipality	Zone 12 to Zone 18, Unit P, Potsdam, Khayelitsha, WSU Potsdam, Campus, Mbekweni	Praecautio	20-10-2021
6	Reeston	Eastern Cape	Buffalo City Local Municipality	Amathole district municipality	No subdistrict	Buffalo City Local Municipality	Reeston, Chicken Farm, Newlife	Praecautio	15-09-2021
7	West Bank	Eastern Cape	Buffalo City Local Municipality	Amathole district municipality	No subdistrict	Buffalo City Local Municipality	Duncan Village, Leach Bay, Nahoon	Praecautio	15-09-2021
8	Zwelitsha	Eastern Cape	Buffalo City Local Municipality	Amathole district municipality	No subdistrict	Buffalo City Local Municipality	Sweet Waters, Zwelitsha, Phakamisa, Ilitha Park	Praecautio	15-09-2021
9	Brickfield	Eastern Cape	Nelson Mandela Metropolitan Municipality	Nelson Mandela A SD	No subdistrict	Nelson Mandela Metropolitan Municipality	KwaNobuhle, Uitenhage, Van Riebeekhoogte	NICD	13-04-2021
10	KwaNobuhle	Eastern Cape	Nelson Mandela Metropolitan Municipality	Nelson Mandela A SD	No subdistrict	Nelson Mandela Metropolitan Municipality	KwaNobuhle, Uitenhage	NICD	13-04-2021
11	Bainsvlei	Free State	Mangaung	Bloemfontein SD	Bloemfontein	Mangaung	Bloemfontein, Bain's Vlei	Lumegen	01-09-2021

12	Bloemspruit	Free State	Mangaung	Bloemfontein SD	Bloemfontein	Mangaung	Langenhoven Park, Bloemfontein	NICD	16-03-2021
13	Northeastern works	Free State	Mangaung	Bloemfontein SD	Bloemfontein	Mangaung	Bloemfontein Maselspoort, Rustig	Lumegen	01-09-2021
14	Sterkwater	Free State	Mangaung	Bloemfontein SD	Bloemfontein	Mangaung	Fonteintjie, Rooidam	NICD	16-03-2021
15	Botshabelo	Free State	Mangaung	Botshabelo SD	Botshabelo	Mangaung	Bonolo, Botshabelo, Poklenberg, Dankbaar, Roodekop	Lumegen	04-10-2021
16	Welvaart	Free State	Mangaung	Botshabelo SD	Botshabelo	Mangaung	Kagisanong, Fichardtpark, Bochebela, Phahameng, Generaal deWet, Willows, Batho, Ro cklands, Universitas	Lumegen	09-09-2021
17	Northern Works	Free State	Mangaung	Bloemfontein SD	Bloemfontein	Mangaung	Midway, Bloemspruit, Grasslands	Lumegen	01-09-2021
18	Dewetsdorp	Free State	Mangaung	Naledi SD	Naledi and Thabanchu	Mangaung	Dewetsdorp, Frankfort, Glengary	Lumegen	01-09-2021
19	Thaba Nchu	Free State	Mangaung	Thaba N'chu SD	Naledi and Thabanchu	Mangaung	Thaba Nchu, Mokwena, Selosesha, Abramskraal, Roodekop, Strydom College, Bultfontein Number Three, Ratlau, Serwalo, Bultfontein Number One, Bultfontein	Lumegen	01-09-2021

							Number Two, Motlala, Lusaka		
20	Ennerdale	Gauteng	City of Johannesburg Metropolitan Municipality	Johannesburg G SD	No subdistrict	City of Johannesbur g Metropolitan Municipality	Walkerville, Hartsenbergfontein, Althea, Golfview, Blignautrus	NIOH	04-10-2021
21	Northern Wastewater Treatment Works	Gauteng	City of Johannesburg Metropolitan Municipality	Johannesburg A SD	No subdistrict	City of Johannesbur g Metropolitan Municipality	Strydompark, Olivedale, Ri vonia, Jukskei Park, Douglasdale, Ferndal e, Lone Hill, Sandton, North Riding, Fourways, Paulshof	NICD	06-04-2021
22	Goudkoppies	Gauteng	City of Johannesburg Metropolitan Municipality	Johannesburg D SD	No subdistrict	City of Johannesbur g Metropolitan Municipality	Soweto, Rivasdale	NICD	24-05-2021
23	Bushkoppies	Gauteng	City of Johannesburg Metropolitan Municipality	Johannesburg G SD	No subdistrict	City of Johannesbur g Metropolitan Municipality	Baragwanath, Pimville, Joh annesburg South, Dube, Willowdene, Nancefield	Waterlab/UP	11-10-2021
24	Olifantsvlei	Gauteng	City of Johannesburg Metropolitan Municipality	Johannesburg G SD	No subdistrict	City of Johannesbur g	Soweto, Eldorado, Lenasia	Waterlab/UP	11-10-2021

						Metropolitan Municipality			
25	Driefontein	Gauteng	City of Johannesburg Metropolitan Municipality	Mogale City LM	No subdistrict	City of Johannesbur g Metropolitan Municipality	Kelvin, Morningside Manor, Edenburg, Lone Hill, Rivonia, Sandton, Nort hdene, Fourways, Paulshof	NIOH	04-10-2021
26	Bronkhortspr uit	Gauteng	City of Tshwane Metropolitan Municipality	Thembisile Hani LM	Tshwane North (sub-districts 3,4,6,7)	City of Tshwane Metropolitan Municipality	Wilgerivier, Wonderfontein, Graley Crown Douglas, Bronkhorst	Waterlab/UP	04-10-2021
27	Klipgat	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 1 SD	Tshwane North (sub-districts 1,2)	City of Tshwane Metropolitan Municipality	KlipgatBoekenhoutfontein, Soshanguve, Mabopane, Honeyvale, Boekenhoutfontein, Lebaleng	SAMRC-TB Platform	02-11-2021
28	Sandspruit	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 1 SD	Tshwane North (sub-districts 1,2)	City of Tshwane Metropolitan Municipality	Medunsa, Hebron, Rosslyn, Strydfontein, Hornsnek, Kruisfontein	Waterlab/UP	11-09-2021
29	Rooiwal Eastern Works	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 2 SD	Tshwane North (sub-districts 1,2)	City of Tshwane Metropolitan Municipality	Rooiwal, Pylpunt, Pyramid, Vasfontein, Petronella, Stil Gelee	NICD	23-03-2021
30	Temba	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 2 SD	Tshwane North (sub-districts 1,2)	City of Tshwane	Majanen, Hammanskraal, Mabopane, Soshanguve, Pyramid, Doornpoort	Waterlab/UP	26-09-2021

						Metropolitan Municipality			
31	Daspoort Wastewater Treatment Works	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 3 SD	Tshwane North (sub-districts 3,4,6,7)	City of Tshwane Metropolitan Municipality	Groenkloof, Arcadia, Pretoria South, Gezina, Hercules, Rietfontein, Pretoria Central, Sunnyside, Pretoria East, Prinshof, Daspoort, Villieria, Capital Park, Pretoria West, Wonderboom South, Pretoria-Wes, Innesdale	NICD	02-03-2021
32	Sunderland Ridge	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 4 SD	Tshwane North (sub-districts 3,4,6,7)	City of Tshwane Metropolitan Municipality	Centurion, Olivenhoutbosch and some parts of Midrand.	NIOH	18-08-2021
33	Babelegi	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 5 SD	Tshwane North (sub-districts 5)	City of Tshwane Metropolitan Municipality	Industrial sites	NIOH	18-08-2021
34	Baviaanspoo rt	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 5 SD	Tshwane North (sub-districts 5)	City of Tshwane Metropolitan Municipality	Elandsfontein, Cullinan, So nderwater	NIOH	18-08-2021
35	Refilwe	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 5 SD	Tshwane North (sub-districts 5)	City of Tshwane	Cullinan	NIOH	05-10-2021

						Metropolitan Municipality			
36	Zeekoegat	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 5 SD	Tshwane North (sub-districts 5)	City of Tshwane Metropolitan Municipality	Zeekoegat, Magalies Water, Buffelsdrif	Waterlab/UP	04-10-2021
37	Godrich	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 7 SD	Tshwane North (sub-districts 3,4,6,7)	City of Tshwane Metropolitan Municipality	Bronkspruit town Rhema Park Caltura park Venster Park Zithobeni	SAMRC-TB Platform	13-09-2021
38	Summer Place Package Plant	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 7 SD	Tshwane North (sub-districts 3,4,6,7)	City of Tshwane Metropolitan Municipality	Summerplace	SAMRC-TB Platform	01-09-2021
39	Rietgat	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 2 SD	Tshwane North (sub-districts 1,2)	City of Tshwane Metropolitan Municipality	Soshanguve	NIOH	05-10-2021
40	Thaba Tshwane	Gauteng	City of Tshwane Metropolitan Municipality	Tshwane 2 SD	Tshwane North (sub-districts 1,2)	City of Tshwane Metropolitan Municipality	Thaba Tshwane, Generaal Kemp Heuwel Radio Uitkyk	Waterlab/UP	05-01-2022

41	Daveyton WasteWater Treatment Works	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni E1 SD	Ekurhuleni East (E1, E2)	Ekurhuleni Metropolitan Municipality	Welgedag, Persida	NICD and CSIR	NICD:02-03-2021 CSIR: 21-09-2021
42	Rynfield	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni E1 SD	Ekurhuleni East (E1, E2)	Ekurhuleni Metropolitan Municipality	New Modder, Lakefield, Benoni, Boksburg, Northmead, Atl asville	CSIR	21-09-2021
43	Ancor	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni E2 SD	Ekurhuleni East (E1, E2)	Ekurhuleni Metropolitan Municipality	Welgedag, Payneville, Selc ourt, Casseldale, Springs	Waterlab/UP	21-09-2021
44	Carl Grundlingh	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni E2 SD	Ekurhuleni East (E1, E2)	Ekurhuleni Metropolitan Municipality	Nigel, Bultfontein, Laversburg	CSIR	21-09-2021
45	Jan Smuts	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni E2 SD	Ekurhuleni East (E1, E2)	Ekurhuleni Metropolitan Municipality	Dalpark, Brakpan, Dersley, Dalview, Benoni, New Modder, Schapenrust	CSIR	21-09-2021
46	Tsakane	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni E2 SD	Ekurhuleni East (E1, E2)	Ekurhuleni Metropolitan Municipality	Benoni, Dersley, Dalpark, Brakpan, Dalview, Schapenrust	Waterlab/UP	05-10-2021
47	Welgedacht	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni E2 SD	Ekurhuleni East (E1, E2)	Ekurhuleni Metropolitan Municipality	KwaThema, Brakpan, Dersl ey, Schapenrust	Waterlab/UP	21-09-2021
48	Hartebeesfo ntein WasteWater	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni N1 SD	Ekurhuleni North (N1, N2)	Ekurhuleni Metropolitan Municipality	Mid- Ennerdale, Althea, Grasme re, Elandsfontein	NICD	NICD:02-03-2021

	Treatment Works							Waterlab/UP	Waterlab/UP: 05-10- 2021
49	Herbert Bickley	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni N1 SD	Ekurhuleni North (N1, N2)	Ekurhuleni Metropolitan Municipality	Jameson Park	CSIR	21-09-2021
50	Olifantsfonte in WasteWater Treatment Works	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni N1 SD	Ekurhuleni North (N1, N2)	Ekurhuleni Metropolitan Municipality	Pinedene, Clayville, Tembis a, Midstream Estates, Olifantsfontein	CSIR and NICD	CSIR: 21-09-2021 NICD: 02-03-2021
51	Benoni	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni N2 SD	Ekurhuleni North (N1, N2)	Ekurhuleni Metropolitan Municipality	Northmead, Dalpark, Dalvi ew, Lakefield, Benoni, New Modder	Waterlab/UP	05-10-2021
52	J.P. Marais	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni N2 SD	Ekurhuleni North (N1, N2)	Ekurhuleni Metropolitan Municipality	Northmead, Atlasville, Ne w Modder, Lakefield, Benoni	CSIR	21-09-2021
53	Dekema	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni S1 SD	Ekurhuleni South (S1, S2)	Ekurhuleni Metropolitan Municipality	Katlehong, Natalspruit, Randhart, Alrode	Waterlab/UP	05-10-2021
54	Rondebult	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni S1 SD	Ekurhuleni South (S1, S2)	Ekurhuleni Metropolitan Municipality	Bartlett, Atlasville, Boksburg North, Lakefield, Bonaero Park, Ravenswood, Witfield, Boksburg	Waterlab/UP	21-09-2021

55	Vlakplaats WasteWater Treatment Works	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni S2 SD	Ekurhuleni South (S1, S2)	Ekurhuleni Metropolitan Municipality	Vosloorus	NICD and CSIR	NICD: 22-02-2021 CSIR: 21-09-2021
56	Waterval WWTW	Gauteng	Ekurhuleni Metropolitan Municipality	Ekurhuleni S2 SD	Ekurhuleni South (S1, S2)	Ekurhuleni Metropolitan Municipality	Kliprivier, Henley on Klip, Ophir, Glen Donald, Chrissiefontein, Ro thdene, Riversdale, Meyert on Farms	Waterlab/UP	21-09-2021
57	Flip Human	Gauteng	West Rand	West Rand *(Johannesburg C SD)	No Subdistrict	Mogale City Local Municipality	Rietvallei, Bhongwem, Brin k's Vlakfontein	Waterlab/UP	12-10-2021
58	Magaliesbur g	Gauteng	West Rand	West Rand (Mogale City LM)	No Subdistrict	Mogale City Local Municipality	Magaliesburg, Mogale City	Waterlab/UP	12-10-2021
59	Percy Steward	Gauteng	West Rand	West Rand (Mogale City LM)	No Subdistrict	Mogale City Local Municipality	Lewisham, Krugersdorp North	Waterlab/UP	12-10-2021
60	Hammarsdal e	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini West	eThekwini Metropolitan Municipality	Hammarsdale, Elangeni, M pumalanga	GreenHill	02-09-2021

61	Hillcrest	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini West	eThekwini Metropolitan Municipality	New Germany, Pinetown, Clermont, Pinela nds, KwaDabeka	GreenHill	02-09-2021
62	Isipingo	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini South	eThekwini Metropolitan Municipality	Umbogintwini, Malukaze, Egolokodo, KwaMakhutha, Umlazi	DUT	10-08-2021
63	Central	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini North	eThekwini Metropolitan Municipality	Brighton Beach, Grosvenor, King's Rest, Ocean View, Fynnland and Treasure Beach	NICD and DUT	NICD: 22-02-2021 DUT: 10-08-2021 for
64	KwaMashu	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini South	eThekwini Metropolitan Municipality	La Lucia, Umhlanga, Prestond ale, Phoenix, Duff's Road, Glen Ashley, Mount Edgecombe	DUT	10-08-2021
65	Northern	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini North	eThekwini Metropolitan Municipality	Newlands, KwaMashu, Gre enwood Park, Park Hill	NICD	22-02-2021
66	Phoenix	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini South	eThekwini Metropolitan Municipality	Rietrivier, KwaMashu, Duff 's Road, Mount Edgecombe, Phoenix, Rich mond, Inanda	DUT	10-08-2021
67	Frasers	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini North	iLembe District municipality	Salt Rock, Ballitoville, Umhlali, Fraser, Zimbali, Shaka's Rock, Ballito	Waterlab/UP	11-10-2021

68	Umbilo	KwazuluNa tal	eThekwini Metropolitan Municipality	eThekwini MM Sub	eThekwini North	eThekwini Metropolitan Municipality	Acorn, Albany, Alexander Park	GreenHill	28-10-2021
69	Darvill	KwazuluNa tal	uMgungundlov u District municipality	Msunduzi LM	No subdistrict	The Msunduzi Local Municipality	Pelham, Hayfields, New England, Northdale, Hay Paddock, Scottsville, Cleland, Bishopstowe, Sobantu	GreenHill	02-09-2021
70	Lynfield Park	KwazuluNa tal	uMgungundlov u District municipality	Msunduzi LM	No subdistrict	The Msunduzi Local Municipality	Thornville, Hayfields, Hay Paddock, Lynnfield Park, Cleland	GreenHill	02-09-2021
71	Mpofana	KwazuluNa tal	Umgungundlov u District municipality	Mpofana LM	No subdistrict	Mpofana Local Municipality	Bruntville, Brown Stones, Windy, Weston, Mooirivier	Waterlab/UP	28-09-2021
72	Howick	KwazuluNa tal	Umgungundlov u District municipality	uMngeni LM	No subdistrict	UMgungundl ovu District municipality	Riversdale, Merrivale, Cedara	GreenHill	02-09-2021
73	Polokwane	Limpopo	Capricorn District municipality	Polokwane LM	No subdistrict	Polokwane Local Municipality	Westenburg, Nirvana, Bendor, Welgelegen, Moregloed, Annadale, Ivydale, Flora Park, Fauna Park, Penina Park, Ivy Park, Ster Park, Dalmada, Broadlands, Woodlands, and Thornhill	Lumegen: /Waterlab/UP	Lumegen: 02-08-2021 Waterlab/UP: 11-10-2021

74	Lebowakgom o	Limpopo	Capricorn District municipality	Lepelle-Nkumpi LM	No subdistrict	Lepelle- Nkumpi LM	Thabamoopo, Vaalboschla agte, Lekhuswaneng, Moepeng, Makurung, Seku rwaneng, Ga-Matshele, Makurun	Waterlab/UP	12-10-2021
75	Emalahleni (Riverview)	Mpumalan ga	Nkangala District Municipality	Emalahleni LM	No subdistrict	Emalahleni LM	Lynnville, Duvhapark, Paxton, Klipfontein	Lumegen	26-07-2021
76	Kanyamazan e	Mpumalan ga	Ehlanzeni District	City of Mbombela LM	No subdistrict	Mbombela/ Umjindi	Daantjielokasie, eNyamaza neni	Waterlab/UP	30-03-2021
77	Mbombela (Kingstonval e)	Mpumalan ga	Ehlanzeni District	Mbombela/Umji ndi	No subdistrict	Mbombela/ Umjindi	Gutshwa, eMpumalanga, eNyalungu, Dwaleni, Hlauhlau, Phasha, Ngodini	Lumegen	26-07-2021
78	Calvinia	Northern Cape	Namakwa	Hantam Local Municipality	No subdistrict	Hantam Local Municipality	Calvinia	NICD	06-07-2021
79	Homevale Kimberley	Northern Cape	Frances Baard	Sol Plaatjie Local Municipality	No subdistrict	Sol Plaatjie Local Municipality	Remount Camp, Kenilworth, Homevale	Lumegen	28-08-2021
80	Potchefstroo m	NorthWest	JB Marks Local Municipality	JB Marks LM	No subdistrict	JB Marks Local Municipality	Harpington, Vyfhoek, Mooi bank, Wilgeboom	Lumegen	17-08-2021
81	Klerksdorp main	NorthWest	Matlosana Local Municipality	City of Matlosana LM	No subdistrict	Matlosana Local Municipality	Boetrand, Wilkoppies	Lumegen	02-08-2021

82	Rustenburg	NorthWest	Bojanala Platinum	Rustenburg Local Municipality	No subdistrict	Rustenburg Local Municipality	Rustenburg	Lumegen and Waterlab/UP	Lumgen: 26-07-2021 Waterlab: 11-10- 2021
83	Bellville	Western Cape	City of Cape Town Metropolitan Municipality	CT Northern SD	No subdistrict	City of Cape Town Metropolitan Municipality	Parow, Belhar, Brackenfell	MRC-BRIP	Not testing quantitatively
84	Cape Flats	Western Cape	City of Cape Town Metropolitan Municipality	CT Southern SD	No subdistrict	City of Cape Town Metropolitan Municipality	Khayelitsha, Mitchells Plain	Waterlab/UP	06-10-2022
85	Athlone	Western Cape	City of Cape Town Metropolitan Municipality	CT Tygerberg	No subdistrict	City of Cape Town Metropolitan Municipality	Crawford, Gleemore, Rondenbosch East	Waterlab/UP	06-10-2021
86	Borcherd's Quarry	Western Cape	City of Cape Town Metropolitan Municipality	CT Tygerberg SD	No subdistrict	City of Cape Town Metropolitan Municipality	Belhar, Elsiesrivier	NICD	09-03-2021
87	Zandvliet	Western Cape	City of Cape Town Metropolitan Municipality	Stellenbosch LM	No subdistrict	City of Cape Town Metropolitan Municipality	Faure, Macassar, Somerset West	NICD	09-03-2021