Network for Genomic Surveillance in South Africa (NGS-SA)

SARS-CoV-2 Sequencing Update
19 August 2022

Supported by the DSI and the SA MRC
Msmi N. Milisana K. et al. Lancet Microbe 2020

Prepared by the National Institute for Communicable Diseases (NICD) of the National Health Laboratory (NHLS) on behalf of the Network for Genomics Surveillance in South Africa (NGS-SA)
The genomic data presented here are based on South African SARS-CoV-2 sequence data downloaded from GISAID (www.gisaid.org) on 19 August 2022 at 10h40.

Data license: https://www.gisaid.org/registration/terms-of-use/

*This represents the cleaned, de-duplicated dataset of unique National and Pneumonia Surveillance sequences. This dataset will be used for all further figures.
Number and percentage of clades by epiweek in South Africa, 2021 – 2022 (37 797*)

*Excludes sequences missing collection dates, as well as those collected January 1st and 2nd 2021 as they are part of epiweek 53 of 2020.

Sequencing data ending epi week 31 (ending 6 Aug 2022)

Currently in epi week 33 (ending 20 Aug 2022)
Prevalence of Variants of Concern (VOC) and Variants of Interest (VOI) in May – July 2022

May (N=2562)

Total Omicron in May: 2547 (99.4%)
- Omicron (22A/BA.4.*) (n=1652, 64%)
- Omicron (22B/BA.5.*) (n=743, 29%)
- Omicron (22C/BA.2.12.1) (n=5, 0.20%)

June (N=1003)

Total Omicron in June: 990 (98.7%)
- Omicron (22B/BA.5.*) (n=531, 53%)
- Omicron (22C/BA.2.12.1) (n=389, 39%)

July (N=339)

Total Omicron in July: 337 (99.4%)
- Omicron (22B/BA.5.*) (n=229, 68%)
- Omicron (22C/BA.2.12.1) (n=38, 11%)
- Omicron (21L/BA.2.*) (n=4, 1%)

Clade key (bar graph)
- New 1
- Omicron (21K/BA.1.*) (n=9, 0.35%)
- Delta (21J) (n=3, 0.12%)
- Omicron (21M/BA.3) (n=1, 0.04%)
- Other (n=1, 0.04%)
Detection Rates: Beta, Delta, C.1.2 and Omicron

Detection rates of variants being monitored in South Africa

*Bars represent percentage prevalence of variant for the month; total number sequences collected for the month are given below the bar

Total sequences

<table>
<thead>
<tr>
<th>Month</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>May–20</td>
<td>335</td>
</tr>
<tr>
<td>Jun–20</td>
<td>397</td>
</tr>
<tr>
<td>Jul–20</td>
<td>1160</td>
</tr>
<tr>
<td>Aug–20</td>
<td>458</td>
</tr>
<tr>
<td>Sep–20</td>
<td>660</td>
</tr>
<tr>
<td>Oct–20</td>
<td>827</td>
</tr>
<tr>
<td>Nov–20</td>
<td>963</td>
</tr>
<tr>
<td>Dec–20</td>
<td>1675</td>
</tr>
<tr>
<td>Jan–21</td>
<td>1595</td>
</tr>
<tr>
<td>Feb–21</td>
<td>622</td>
</tr>
<tr>
<td>Mar–21</td>
<td>938</td>
</tr>
<tr>
<td>Apr–21</td>
<td>665</td>
</tr>
<tr>
<td>May–21</td>
<td>1406</td>
</tr>
<tr>
<td>Jun–21</td>
<td>3577</td>
</tr>
<tr>
<td>Jul–21</td>
<td>3248</td>
</tr>
<tr>
<td>Aug–21</td>
<td>1024</td>
</tr>
<tr>
<td>Sep–21</td>
<td>828</td>
</tr>
<tr>
<td>Oct–21</td>
<td>1779</td>
</tr>
<tr>
<td>Nov–21</td>
<td>4062</td>
</tr>
<tr>
<td>Dec–21</td>
<td>2806</td>
</tr>
<tr>
<td>Jan–22</td>
<td>1213</td>
</tr>
<tr>
<td>Feb–22</td>
<td>1483</td>
</tr>
<tr>
<td>Mar–22</td>
<td>2468</td>
</tr>
<tr>
<td>Apr–22</td>
<td>2596</td>
</tr>
<tr>
<td>May–22</td>
<td>1003</td>
</tr>
<tr>
<td>Jun–22</td>
<td>339</td>
</tr>
<tr>
<td>Jul–22</td>
<td>7</td>
</tr>
</tbody>
</table>

Variants:
- Omicron (21L/BA.2.*)
- Omicron (21K/BA.1. *)
- C.1.2
- Omicron (21M/BA.3)
- Omicron (22A/BA.4)
- Omicron (22B/BA.5)
- Omicron (22C/BA.2.12.1)
- Omicron (22D/BA.2.75)
- Beta
- Delta

*Bars represent percentage prevalence of variant for the month; total number sequences collected for the month are given below the bar.
South Africa, 2021-2022, n = 37,797*

*Excludes sequences missing collection dates, as well as those collected January 1st and 2nd 2021 as they are part of epiweek 53 of 2020.
Eastern Cape Province, 2021-2022, n = 3004

Genomes added since last report: 0*

EC number of genomes, cases, and PTP per epiweek (N=3004)

EC percentage of genomes, number of cases, and PTP per epiweek (N=3004)

Clade key (bar graph)

Weekly percentage testing positive key (line graph)

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
Free State Province, 2021-2022, n = 1623

Genomes added since last report: 0*

Mouse over bars for numbers.

Weekly percentage testing positive key (line graph)

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
Gauteng Province, 2021-2022, n = 10 491

Genomes added since last report: 5*

GP number of genomes, cases, and PTP per epiweek (N=10491)

GP percentage of genomes, number of cases, and PTP per epiweek (N=10491)

Clade key (bar graph)

Weekly percentage testing positive key (line graph)

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
KwaZulu-Natal Province, 2021-2022, n = 4145

Genomes added since last report: 6*

KZN number of genomes, cases, and PTP per epiweek (N=4145)

Weekly percentage testing positive key (line graph)

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
Limpopo Province, 2021-2022, n = 2610

Genomes added since last report: 1*

LP number of genomes, cases, and PTP per epiweek (N=2610)

LP percentage of genomes, number of cases, and PTP per epiweek (N=2610)

Clade key (bar graph)

Weekly percentage testing positive key (line graph)

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
Mpumalanga Province, 2021-2022, n = 2836

Genomes added since last report: 0*

MP number of genomes, cases, and PTP per epiweek (N=2836)

MP percentage of genomes, number of cases, and PTP per epiweek (N=2836)

Clade key (bar graph)

Weekly percentage testing positive key (line graph)

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
Northern Cape Province, 2021-2022, n = 1947

Genomes added since last report: 16*

NC number of genomes, cases, and PTP per epiweek (N=1947)

NC percentage of genomes, number of cases, and PTP per epiweek (N=1947)

Clade key (bar graph)

Weekly percentage testing positive key (line graph)

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
North West Province, 2021-2022, n = 2248

Genomes added since last report: 0*

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
Western Cape Province, 2021-2022, n = 8884

Genomes added since last report: 67*

WC number of genomes, cases, and PTP per epiweek (N=8884)

WC percentage of genomes, number of cases, and PTP per epiweek (N=8884)

Clade key (bar graph)

Weeklly percentage testing positive key (line graph)

*May include genomes from 2020 which are not pictured here and are not included in the slide total.
Summary

- **Sequencing update**
 - All provinces have sequences for April, May and June. July sequences are from all provinces except LP and NC.
 - August sequences are from KZN and LP, however the number of sequences (N=7) are too small to assess trends.
 - Omicron dominated in May (99.4%), June (98.7%) and July (99.4%). BA.4 and BA.5 together were dominant in May, June and July.

- **N=9 sequences with novel mutational profile**
 - No recent sequences have been detected but NGS-SA teams are closely monitoring the data

- **Variant of Concern Omicron in South Africa**
 - Dominates 2022 sequencing data at >98% of genomes.
 - While BA.1 was the predominant lineage in January (55%), BA.2 dominated in February (86%) and March (78%).
 - Omicron lineages BA.4 and BA.5 increased in prevalence in March (16%), and together are dominant in April (73%), May (93%), June (92%) and July (96%).
 - BA.2.12.1 was detected in South Africa at low prevalence in May, June and July (<1%)
 - BA.2.75 was detected for the first time in South Africa in July (n=1).

- Low frequency of previously circulating variants such as Delta still detected in recent data.

1. https://github.com/cov-lineages/pango-designation/releases/tag/v1.3
Spike protein mutation* profile of Variants of Interest and Concern

- Multiple changes within the two immunogenic regions in S1 (NTD and RBD)
 - Including a three amino acid insertion
- Accumulation of mutations surrounding the furin cleavage site
 - Including combination of N679K and P681H
- Effect of most spike S2 subunit changes have not been defined, but may be linked to immune escape

*Only mutations present in Omicron, Delta, or the new SGTP sequences are pictured
BA.4 and BA.5 spike mutations

Frequency of spike SNVs for Omicron (22A/BA.4.*) (n = 3809)

Frequency of spike SNVs for Omicron (22B/BA.5.*) (n = 1898)
BA.4 whole genome mutation prevalence over time
BA.5 whole genome mutation prevalence over time
This project (RIA2020EF-3030) is part of the EDCTP2 programme supported by the European Union.
Additional support and collaborators

NHLS
Koeleka Mlisana
Zinhle Makatini
Eugene Elliot
Florette K. Treurnicht
Kathleen Subramoney
Oluwakemi Laguda-Akingba
Shareef Abrahams
Greta Hoyland
Gloria Selabe
Elias Bereda
Jeannette Wadula

Hyrax Biosciences
Simon Travers

Cape Town HVTN Laboratory
Erica Anderson-Nissen
Anneta Naidoo

Ndlovu Research
Hugo Tempelman
CJ Umunnakwe

Lancet
Allison J. Glass
Raquel Viana

Ampath
Terry Marshall
Cindy van Deventer
Eddie Silberbauer

Pathcare Vermaak
Andries Dreyer
Howard Newman
Riaan Writes
Marianne Wolfaardt
Warren Lowman

Bridge-the-Gap
Raymond Rott

Cytespace Africa Laboratories
Christa Viljoen

ARC-OVI
Lia Rotherham

CAPRISA
Salim Abdool Karim
Nigel Garret

UKZN - Big Data
Francesco Pettruccione
Ilya Sinayskiy

University of Oxford
José Lourenço

FioCruz, Brazil
Vagner Fonseca
Marta Giovanetti
Luiz Carlos Junior Alcantara

Africa CDC
John Nkengasong
Sofonias Tessema

Netcare:
Richard Friedland
Craig Murphy
Caroline Maslo
Liza Sitharam

DSI
Glaudina Loots

SA MRC
Glenda Gray
Multiple labs from NGS-SA and collaborating public and private laboratories are contributing to sequencing, both as originating and as submitting (pictured here) laboratories.

NGS-SA Labs
CERI: Centre for Epidemic Response and Innovation
KRISP: KZN Research Innovation and Sequencing Platform
NDLOVU: Ndlovu Research Laboratories
NICD: National Institute for Communicable Diseases
NHLS: National Health Laboratory Service
SU: Stellenbosch University
UCT: University of Cape Town
UFS: University of the Free State
UP: University of Pretoria
Currently circulating Variants of Concern (VOC)

<table>
<thead>
<tr>
<th>WHO label</th>
<th>Pango lineage</th>
<th>GISAID clade</th>
<th>Nextstrain clade</th>
<th>Additional amino acid changes monitored</th>
<th>Earliest documented samples</th>
<th>Date of designation</th>
</tr>
</thead>
</table>

* Includes BA.1, BA.2, BA.3, BA.4, BA.5 and descendant lineages. It also includes BA.1/BA.2 circulating recombinant forms such as XE. WHO emphasizes that these descendant lineages should be monitored as distinct lineages by public health authorities and comparative assessments of their virus characteristics should be undertaken.

* Only found in a subset of sequences

Previously circulating Variants of Concern

<table>
<thead>
<tr>
<th>WHO label</th>
<th>Pango lineage •</th>
<th>GISAID clade</th>
<th>Nextstrain clade</th>
<th>Earliest documented samples</th>
<th>Date of designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td>B.1.1.7</td>
<td>GRY</td>
<td>20I (V1)</td>
<td>United Kingdom, Sep-2020</td>
<td>VOC: 18-Dec-2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Previous VOC: 09-Mar-2022</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Previous VOC: 09-Mar-2022</td>
<td></td>
</tr>
<tr>
<td>Gamma</td>
<td>P.1</td>
<td>GR/501Y.V3</td>
<td>20J (V3)</td>
<td>Brazil, Nov-2020</td>
<td>VOC: 11-Jan-2021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Previous VOC: 09-Mar-2022</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Previous VOC: 11-May-2021</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Previous VOC: 7-Jun-2022</td>
<td></td>
</tr>
</tbody>
</table>

• Includes all descendant lineages. See the cov-lineages.org and the Pango network websites for further details.

Submission of routine specimens for sequencing

- representative of multiple geographic regions (provinces/districts/health facilities) from individuals of
 - all ages
 - over as many time periods during the SARS-CoV-2 epidemic in South Africa
- requested that testing laboratories in both the private and public sectors, submit respiratory samples to their closest NGS-SA sequencing laboratory on a routine basis (ideally every week) as follows, depending on the capacity of the testing laboratory:
 - All positives samples should be sent every week (NGS-SA laboratory will perform random sampling as described below) OR
 - A weekly selection of approximately 10%-20% of randomly selected positive samples should be sent every week. Number of selected samples will depend on the size of laboratory and how many other laboratories are drained by the submitting laboratory.
Submission of special interest specimens for sequencing

In addition to routine samples mentioned above, please send specimens separately to above and clearly marked if:

• Suspected vaccine breakthrough (≥14 days after vaccine), especially if hospitalised and clinically severe
• Suspected re-infection (≥90 days after previous episode), especially if hospitalised and clinically severe
• Prolonged shedding with high SARS-CoV-2 viral loads (i.e. Ct values less than 30 for more than 1 month post-primary diagnosis) in immunocompromised individuals
• Possible animal-to-human transmission
• Suspected cases of importation from another country, especially countries known to harbour SARS-CoV-2 variants of concern or countries with little available information
• Clusters of “unusual” cases (e.g., in terms of disease presentation, patient groups affected, etc.)