National Institute for Communicable Diseases

1 Modderfontein Road

Sandringham

2192

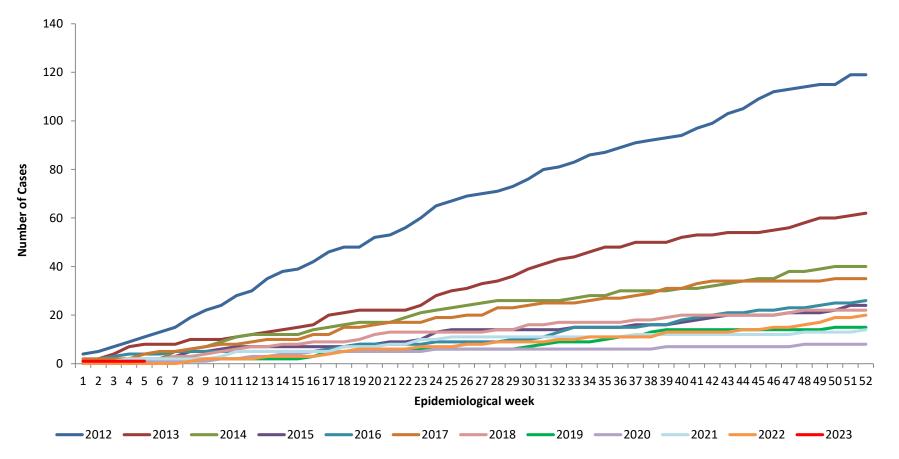
# Cumulative invasive pneumococcal disease case numbers reported by the GERMS-SA surveillance programme, 1 January 2012 to 31 January 2023

### **GERMS-SA surveillance programme**

- GERMS-SA is a national, active, laboratory-based surveillance system initiated in 2003.
- Invasive pneumococcal disease (IPD) cases defined as hospitalised individuals with Streptococcus pneumoniae detected from normally sterile-site specimens (e.g. cerebrospinal fluid, blood or joint fluid).
- Repeat isolates from the same individual within 21 days were excluded.
- ~190 laboratories each year send reports and isolates.
- Age, sex, date of specimen collection, and source of specimen were captured.
- Pneumococcal isolates were serotyped by Quellung reaction using specific antisera (Statens Serum Institute, Copenhagen, Denmark). Culture-negative/bacterial antigen detection test positive, or isolates that lost viability were confirmed positive using a real-time *lytA* PCR¹ and serotyped using an adaption from the method described by Azzari *et al.*² This molecular assay includes targets for 38 serotypes (42 serotypes prior to 2014) and covers all serotypes included in PCV13. Only samples with an initial *lytA* PCR ct value of ≤35 were included. Where ct value was ≤35 but no serotype could be identified by including the 38 targets (42 targets prior to 2014), serotype was classified as non-vaccine type. Where *lytA* PCR ct value was ≥36, serotype was classified as unknown and was not included in graphs. Where the PCR target could not distinguish between vaccine and non-vaccine serotype, serotype was classified as unknown and not included in the figures (targets: 18ABC, 18ABCF, 7AF, 9ALVN and 9AV).
- Cumulative graph case numbers include viable isolates and those non-viable but characterised using molecular diagnostic techniques.
- Figures 1 3 are for cases < 5 years, and Figures 4 6 for cases 5 years and older. Cases with unknown age were excluded from the figures.
- There are three graphs for each age group:
  - o Disease caused by any of the seven serotypes in PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F)
  - Disease caused by any of the six additional serotypes in PCV13 but not in PCV7 (1, 3, 5, 6A, 7F, 19A)
  - Disease caused by any serotypes not in PCV13
- Figures showing number of <u>viable</u> isolates submitted to GERMS-SA from 2008 to 2012 can be found in the appendix at the end of this report.
- More information on the GERMS-SA system available at: https://www.nicd.ac.za/centres/division-of-public-health-surveillance-and-response/

### PCV vaccine introduction in South Africa

- The 7-valent pneumococcal conjugate vaccine (PCV7) was introduced into the South African Expanded Programme on Immunisation in April 2009, with no catch-up vaccination campaign.
- There was a graded replacement of PCV7 by 13-valent pneumococcal conjugate vaccine (PCV13) in 2011. By June 2011 all provinces were using PCV13.




# Centre for Respiratory Diseases and Meningitis National Institute for Communicable Diseases 1 Modderfontein Road Sandringham 2192

- There was a limited PCV13 catch-up campaign in 2011 and 2012.
- WHO/UNICEF vaccine coverage estimates for receiving a third dose of the PCV vaccine in South Africa are 10% in 2009, 58% in 2010, 62% in 2011, 75% in 2012, 77% in 2013, 85% in 2014, 85% 2015, 82% in 2016, 78% in 2017, 83% in 2018, 86% in 2019, 83% in 2020, and 87% in 2021.<sup>3</sup>
- The effect of the vaccine on IPD in South Africa has been described. 4,5

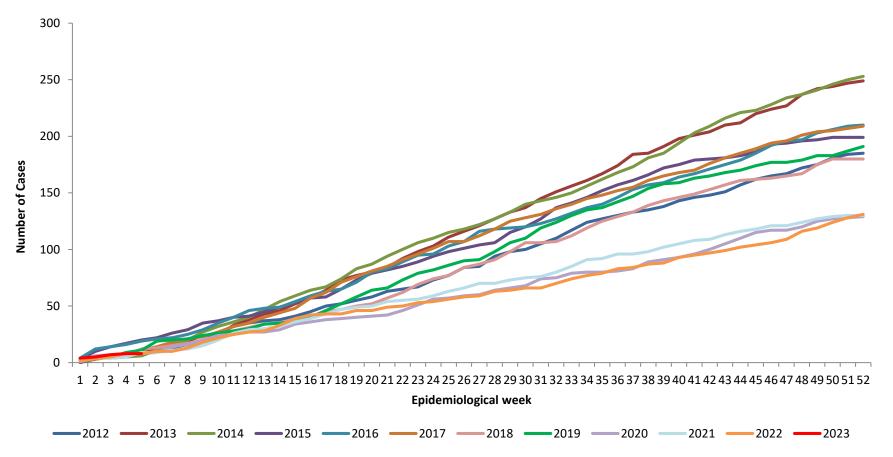
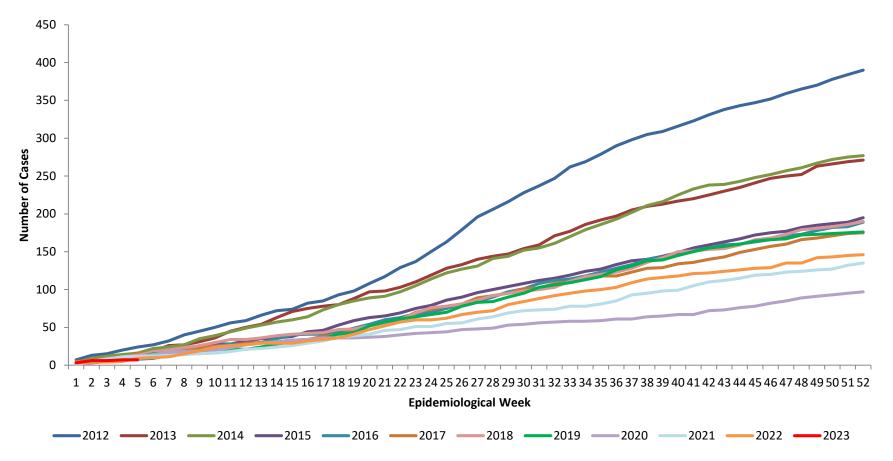
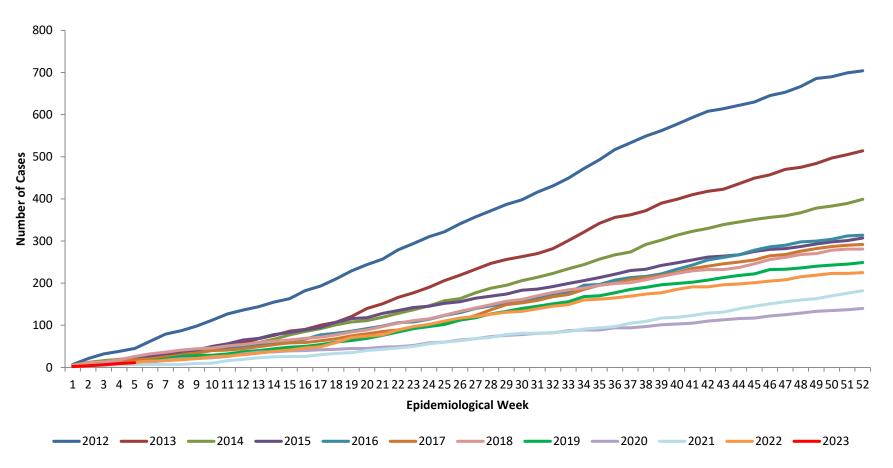


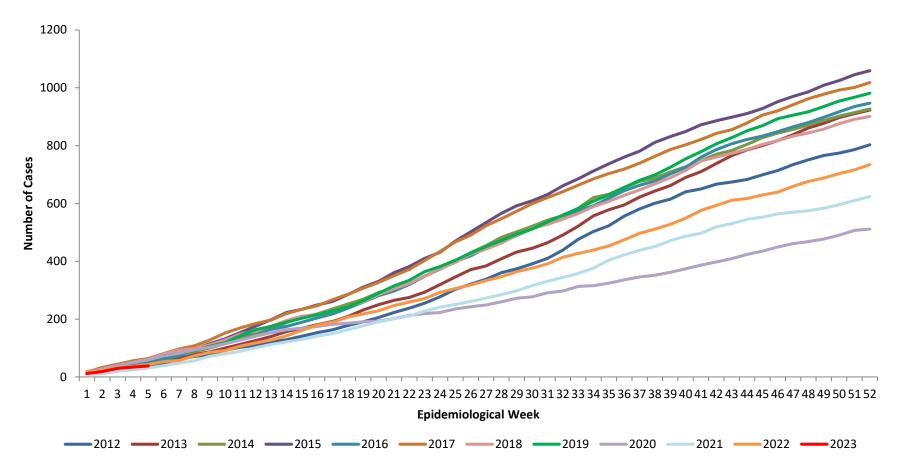
**Figure 1**. Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the seven serotypes (4, 6B, 9V, 14, 18C, 19F and 23F) in PCV7: children <5 years of age in South Africa, from 2012 to date. Viable isolates and those serotyped using molecular techniques included.



**Figure 2.** Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the six additional (1, 3, 5, 6A, 7F, 19A) serotypes in PCV13 but not in PCV7: children <5 years of age in South Africa, from 2012 to date. Viable isolates and those serotyped using molecular techniques included. (Note: There is reported cross protection between 6A and 6B which is included in PCV7<sup>6</sup>)



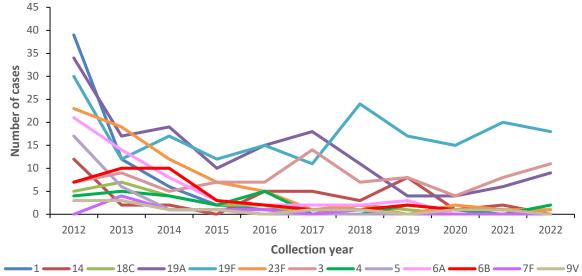


Figure 3. Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the serotypes <u>not in PCV13: children</u> <5 years of age in South Africa, from 2012 to date. Viable isolates and those serotyped using molecular techniques included.



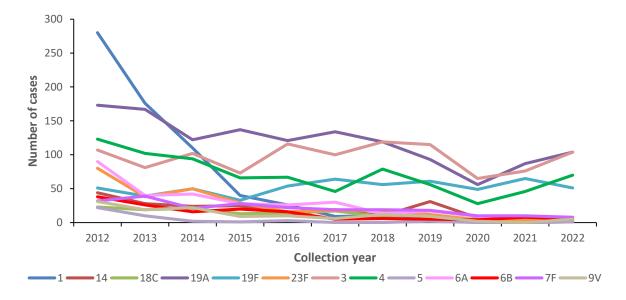
**Figure 4**. Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the seven serotypes (4, 6B, 9V, 14, 18C, 19F and 23F) in PCV7: individuals ≥5 years of age in South Africa, from 2012 to date. Viable isolates and those serotyped using molecular techniques included.



**Figure 5**: Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the six additional (1, 3, 5, 6A, 7F, 19A) serotypes in PCV13 but not in PCV7: individuals ≥5 years of age in South Africa, from 2012 to date. Viable isolates and those serotyped using molecular techniques included (Note: There is reported cross protection between 6A and 6B which is included in PCV7<sup>6</sup>)




**Figure 6.** Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the serotypes <u>not in PCV13:</u> <u>individuals ≥5 years of age</u> in South Africa, from 2012 to date. Viable isolates and those serotyped using molecular techniques included.


# 3

## **Centre for Respiratory Diseases and Meningitis**





**Figure 7.** Number of disease episodes of invasive pneumococcal disease due to serotypes <u>included in PCV13: individuals <5 years of age</u> in South Africa, from January 2012 to December 2022. Viable isolates and those serotyped using molecular techniques included.



**Figure 8.** Number of disease episodes of invasive pneumococcal disease due to serotypes included in PCV13: individuals ≥5 years of age in South Africa, from January 2012 to December 2022. Viable isolates and those serotyped using molecular techniques included.

### Missing information

Age was unknown for 1132 of the cases (Table 1). By the time that this report was produced there were 4 viable isolates with pending serotype results (Table 2). For 440 isolates in the reporting period, serotype could not be identified due to high  $C_t$  value during *lytA* PCR, or PCR serotype target not distinguishing between vaccine and non-vaccine serotype.

**Table 1.** Isolates with missing age; number of viable, non-viable isolates and audit cases identified, January 2012 to date.

|       | Age missing,<br>n(%) |     | Viable, n(%) |      | Non-viable, n(%) |      | Audit/missing isolates, n(%) |      | Capture<br>delays*, n(%) |      | Total  |
|-------|----------------------|-----|--------------|------|------------------|------|------------------------------|------|--------------------------|------|--------|
| 2012  | 248                  | (8) | 2,160        | (67) | 273              | (8)  | 789                          | (24) | 0                        | (0)  | 3222   |
| 2013  | 138                  | (5) | 1,932        | (67) | 268              | (9)  | 665                          | (23) | 0                        | (0)  | 2865   |
| 2014  | 165                  | (6) | 1,752        | (64) | 291              | (11) | 688                          | (25) | 0                        | (0)  | 2731   |
| 2015  | 157                  | (6) | 1,700        | (65) | 208              | (8)  | 727                          | (28) | 0                        | (0)  | 2635   |
| 2016  | 41                   | (2) | 1,578        | (65) | 197              | (8)  | 658                          | (27) | 0                        | (0)  | 2433   |
| 2017  | 34                   | (1) | 1,535        | (63) | 280              | (11) | 625                          | (26) | 0                        | (0)  | 2440   |
| 2018  | 42                   | (2) | 1,336        | (58) | 327              | (14) | 650                          | (28) | 0                        | (0)  | 2313   |
| 2019  | 38                   | (2) | 1,385        | (59) | 345              | (15) | 621                          | (26) | 0                        | (0)  | 2351   |
| 2020  | 30                   | (2) | 790          | (64) | 183              | (15) | 269                          | (22) | 0                        | (0)  | 1242   |
| 2021  | 96                   | (6) | 982          | (63) | 244              | (16) | 323                          | (21) | 0                        | (0)  | 1549   |
| 2022  | 136                  | (7) | 1,199        | (65) | 202              | (11) | 428                          | (23) | 21                       | (1)  | 1850   |
| 2023  | 7                    | (8) | 73           | (85) | 3                | (3)  | 0                            | (0)  | 10                       | (12) | 86     |
| Total | 1,132                | (4) | 16,422       | (64) | 2,821            | (11) | 6,443                        | (25) | 31                       | (0)  | 25,717 |

<sup>\*</sup>Cases reported to CRDM, but viability is unknown due to capturing delays.

Table 2. Cases where serotype was not available at the time this report was produced

|       |       |          |                  |                  | Viability        |                 |  |  |  |
|-------|-------|----------|------------------|------------------|------------------|-----------------|--|--|--|
|       | Not   | Unknown  | Viable, serotype | Non-viable,      | unknown*,        | Total serotypes |  |  |  |
|       | typed | serotype | pending          | serotype pending | serotype pending | pending         |  |  |  |
| 2012  | 38    | 9        | 0                | 0                | 0                | 0               |  |  |  |
| 2013  | 38    | 12       | 0                | 0                | 0                | 0               |  |  |  |
| 2014  | 1     | 39       | 0                | 0                | 0                | 0               |  |  |  |
| 2015  | 0     | 38       | 0                | 0                | 0                | 0               |  |  |  |
| 2016  | 2     | 30       | 0                | 0                | 0                | 0               |  |  |  |
| 2017  | 3     | 44       | 0                | 0                | 0                | 0               |  |  |  |
| 2018  | 0     | 38       | 0                | 0                | 0                | 0               |  |  |  |
| 2019  | 0     | 68       | 0                | 0                | 0                | 0               |  |  |  |
| 2020  | 0     | 43       | 0                | 0                | 0                | 0               |  |  |  |
| 2021  | 0     | 65       | 0                | 0                | 0                | 0               |  |  |  |
| 2022  | 0     | 54       | 3                | 13               | 21               | 37              |  |  |  |
| 2023  | 0     | 0        | 1                | 2                | 10               | 13              |  |  |  |
| Total | 82    | 440      | 4                | 15               | 31               | 50              |  |  |  |

<sup>\*</sup> Viability unknown due to capturing delays

# NATIONAL INSTITUTE FOR COMMUNICABLE DISEASES Division of the National Health Laboratory Service

### **Centre for Respiratory Diseases and Meningitis**

National Institute for Communicable Diseases

1 Modderfontein Road

Sandringham

2192

### Discussion

Serotypes 19F, 19A and 3 continue to be the most detected vaccine serotypes among young children <5 years of age (Figure 7) and serotypes 3, 19A and 4 among individuals aged ≥5 years (Figure 8). Compared to previous years, there was a marked reduction in IPD episodes in 2020 and 2021. Due to the coronavirus disease 2019 (COVID-19) pandemic, a nation-wide lockdown was implemented on 26 March 2020 (week 13). The reduction in IPD episodes could be related to one or more of the following: reduced healthcare seeking behaviour; closures of work-places, schools and universities; physical distancing and the mandatory wearing of masks.<sup>7</sup> This reduction in invasive pneumococcal disease in 2020 is a global phenomenon which coincided closely with the introduction of COVID-19 containment measures in each country.<sup>8</sup> IPD episodes have increased again in 2022, most evident in individuals aged ≥5 years, but with episode numbers still remaining below what was observed in 2019. While it may take some time for healthcare seeking behaviour and testing practices to return to pre-pandemic levels, GERMS-SA is continuing to collaborate with laboratories to encourage the submission of specimens to improve the monitoring of trends.

### **Data Source**

National Institute for Communicable Diseases | GERMS-SA

Last updated: 17 March 2023 Next update: 1 June 2023

# NATIONAL INSTITUTE FOR COMMUNICABLE DISEASES Division of the National Health Laboratory Service

### **Centre for Respiratory Diseases and Meningitis**

National Institute for Communicable Diseases

1 Modderfontein Road

Sandringham

2192

### References

- 1. Carvalho MdGS, Tondella ML, McCaustland K, et al. Evaluation and Improvement of Real-Time PCR Assays Targeting lytA, ply, and psaA Genes for Detection of Pneumococcal DNA. *J Clin Microbiol*. 2007;45(8):2460-2466.
- 2. Azzari C, Moriondo M, Indolfi G, et al. Realtime PCR Is More Sensitive than Multiplex PCR for Diagnosis and Serotyping in Children with Culture Negative Pneumococcal Invasive Disease. *PLoS One.* 2010;5(2):e9282.
- 3. WHO/UNICEF. South Africa: WHO and UNICEF estimates of immunization coverage. 2022; https://data.unicef.org/resources/dataset/immunization/.
- 4. von Gottberg A, de Gouveia L, Tempia S, et al. Effects of vaccination on invasive pneumococcal disease in South Africa. *N Engl J Med.* 2014;371(20):1889-1899.
- 5. Kleynhans J, Cohen C, McMorrow M, et al. Can pneumococcal meningitis surveillance be used to assess the impact of pneumococcal conjugate vaccine on total invasive pneumococcal disease? A case-study from South Africa, 2005-2016. *Vaccine*. 2019;37(38):5724-5730.
- 6. Whitney CG, Pilishvili T, Farley MM, et al. Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. *The Lancet*. 2006;368(9546):1495-1502.
- 7. National Institute for Communicable D. Reduction in invasive pneumococcal disease in South Africa, January through July 2020. Available from <a href="https://www.nicd.ac.za/wp-content/uploads/2020/08/Pneumococcal-disease.pdf">https://www.nicd.ac.za/wp-content/uploads/2020/08/Pneumococcal-disease.pdf</a> Accessed 14 September 2020. Communicable Diseases Communique. 2020;19(8):5.
- 8. Brueggemann AB, Jansen van Rensburg MJ, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. *The Lancet Digital Health*. 2021;3(6):e360-e370.



National Institute for Communicable Diseases

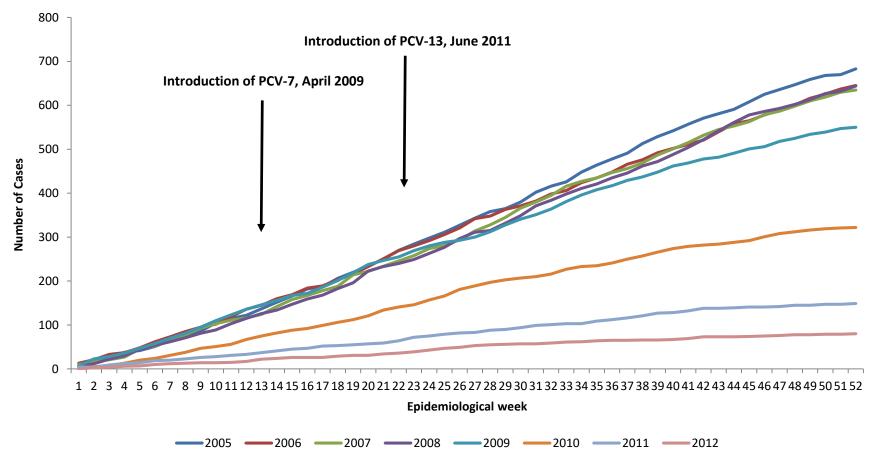
1 Modderfontein Road

Sandringham

2192

# Appendix: Cumulative invasive pneumococcal disease case numbers reported by the GERMS-SA surveillance programme, January 2005 to December 2012

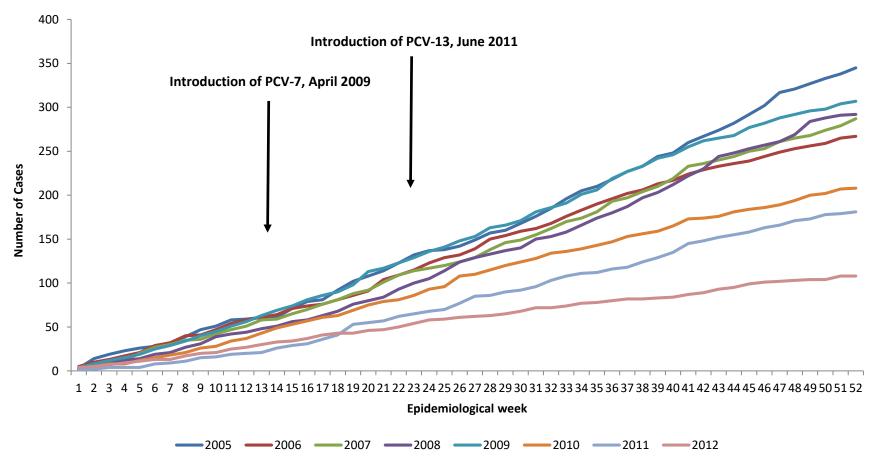
### **GERMS-SA surveillance programme**


- GERMS-SA is a national, active, laboratory-based surveillance system initiated in 2003.
- Invasive pneumococcal disease (IPD) cases defined as hospitalised individuals with *Streptococcus pneumoniae* cultured from normally sterile site specimens (e.g. cerebrospinal fluid, blood or joint fluid).
- Repeat isolates from the same individual within 21 days were excluded.
- ~190 laboratories each year send reports and isolates.
- Age, sex, date of specimen collection, and source of specimen were captured.
- Pneumococci were serotyped by Quellung reaction using specific antisera (Statens Serum Institute, Copenhagen, Denmark).
- Only viable isolates are included in cumulative graph case numbers as molecular diagnostic techniques were only introduced in 2007.
- Figures 1 3 are for cases < 5 years, and Figures 4 6 for cases 5 years and older. Cases with unknown age were excluded from the figures.
- There are three graphs for each age group:
  - o Disease caused by any of the seven serotypes in PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F)
  - Disease caused by any of the six additional serotypes in PCV13 but not in PCV7 (1, 3, 5, 6A, 7F, 19A)
  - Disease caused by any serotypes not in PCV13
- More information on the GERMS-SA system available at: http://www.nicd.ac.za/centres/division-of-public-health-surveillance-and-response/

## **PCV vaccine introduction in South Africa**

- The 7-valent pneumococcal conjugate vaccine (PCV-7) was introduced to the South African Expanded Programme on Immunization in April 2009, with no catch-up vaccination campaign.
- There was a graded replacement of PCV-7 by 13-valent pneumococcal conjugate (PCV-13) in 2011. By June 2011 all provinces were using PCV-13.
- There was a limited PCV-13 catch-up campaign in 2011 and 2012.




Appendix: Cumulative invasive pneumococcal disease case numbers reported by the GERMS-SA surveillance programme, 1 January 2005 to December 2012



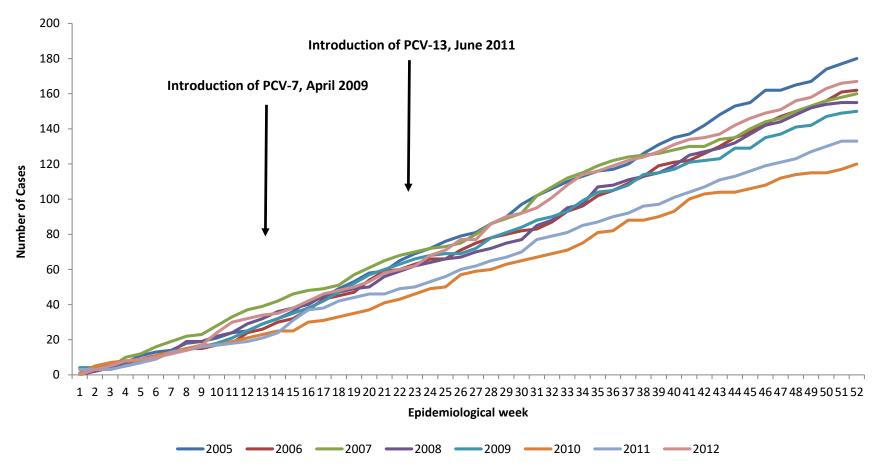
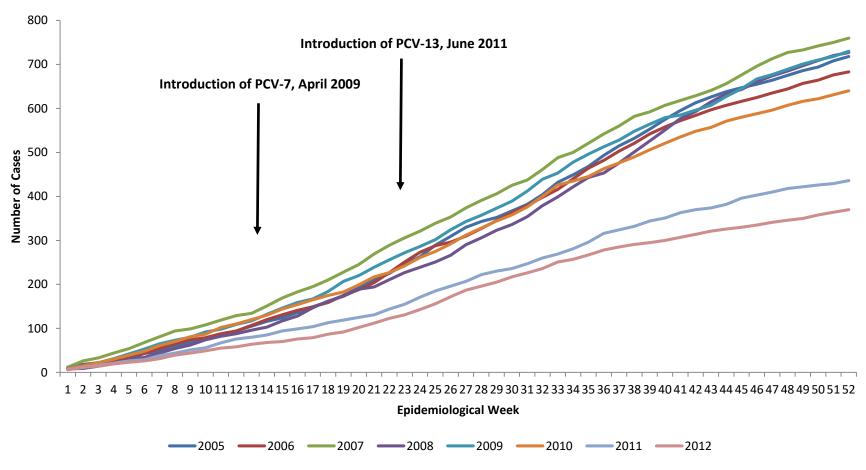
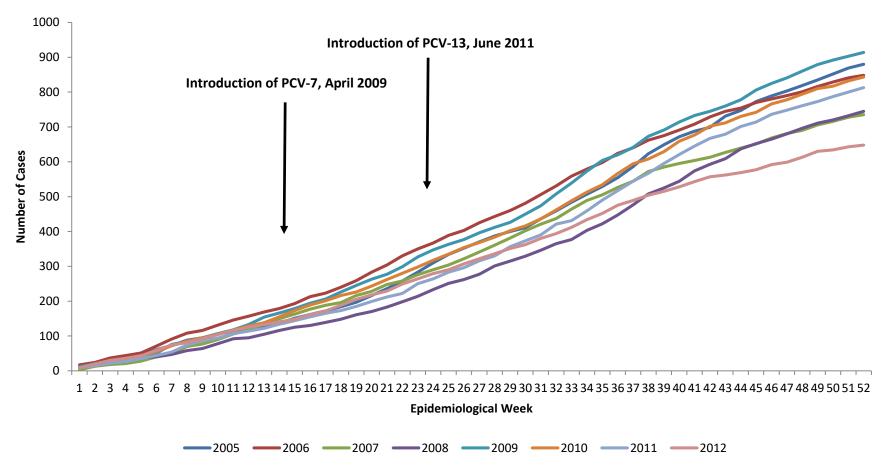
**Figure 1**. Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the seven serotypes (4, 6B, 9V, 14, 18C, 19F and 23F) in PCV-7: children <5 years of age in South Africa, from 2005 to 2012. Only viable isolates serotyped using Quellung method included.

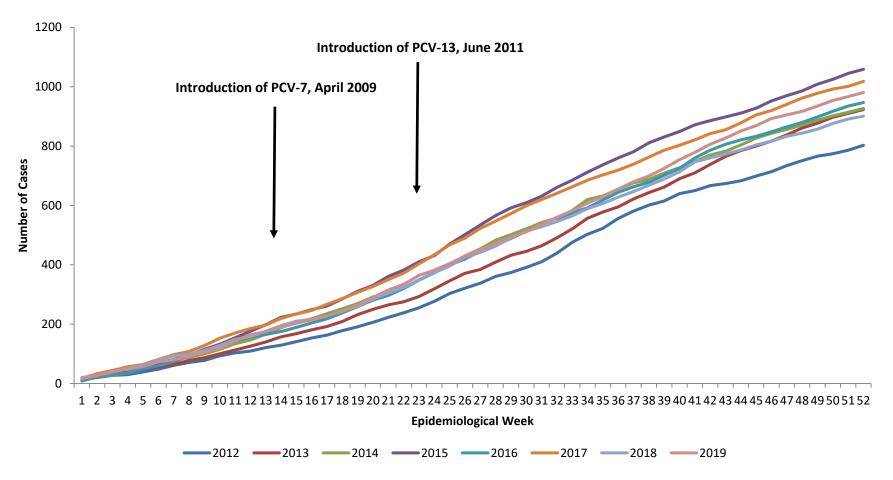


Appendix: Cumulative invasive pneumococcal disease case numbers reported by the GERMS-SA surveillance programme, 1 January 2005 to December 2012



**Figure 2.** Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the six additional (1, 3, 5, 6A, 7F, 19A) serotypes in <u>PCV-13 but not in PCV7: children <5 years of age</u> in South Africa, from 2005 to 2012. Only viable isolates serotyped using Quellung method included. (Note: There is reported cross protection between 6A and 6B which is included in PCV7<sup>6</sup>)



Figure 3. Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the <u>serotypes not in PCV13: Children</u> <5 years of age in South Africa, from 2005 to 2012. Only viable isolates serotyped using Quellung method included.



**Figure 4**. Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the seven serotypes (4, 6B, 9V, 14, 18C, 19F and 23F) in <u>PCV-7</u>: <u>Individuals ≥5 years of age</u> in South Africa, from 2005 to 2012. Only viable isolates serotyped using Quellung method included.



**Figure 5**: Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the six additional (1, 3, 5, 6A, 7F, 19A) serotypes in PCV-13 but not in PCV-7: individuals ≥5 years of age in South Africa, from 2005 to 2012. Only viable isolates serotyped using Quelling method included. (Note: There is reported cross protection between 6A and 6B which is included in PCV-7<sup>6</sup>)



**Figure 6.** Cumulative weekly number of disease episodes of invasive pneumococcal disease due to any of the <u>serotypes not in PCV-13: individuals</u> ≥5 years of age in South Africa, from 2005 to 2012. Only viable isolates serotyped using Quellung method included.



National Institute for Communicable Diseases
1 Modderfontein Road
Sandringham
2192

Appendix: Cumulative invasive pneumococcal disease case numbers reported by the GERMS-SA surveillance programme, 1 January 2005 to December 2012

### **Missing information**

**Table 1.** Isolates with missing age; number of viable and non-viable isolates and audit cases identified, 2005-2012

|      | Age missing<br>(%) | g, n | Viable, n (%) |      |       | Non-viable, n<br>(%) |       | Audit, n (%) |        |
|------|--------------------|------|---------------|------|-------|----------------------|-------|--------------|--------|
| 2005 | 236 (              | 5)   | 3,650         | (75) | 380   | (8)                  | 856   | (18)         | 4,886  |
| 2006 | 223 (              | 5)   | 3,419         | (72) | 444   | (9)                  | 868   | (18)         | 4,731  |
| 2007 | 217 (              | 5)   | 3,329         | (70) | 597   | (13)                 | 816   | (17)         | 4,742  |
| 2008 | 208 (              | 4)   | 3,327         | (69) | 576   | (12)                 | 932   | (19)         | 4,835  |
| 2009 | 161 (              | 3)   | 3,387         | (71) | 532   | (11)                 | 841   | (18)         | 4,760  |
| 2010 | 141 (              | 3)   | 2,873         | (68) | 515   | (12)                 | 809   | (19)         | 4,197  |
| 2011 | 218 (              | 6)   | 2,409         | (63) | 451   | (12)                 | 944   | (25)         | 3,804  |
| 2012 | 248 (              | 8)   | 2,160         | (67) | 344   | (11)                 | 718   | (22)         | 3,222  |
| All  | 1,652 (            | 5)   | 24,554        | (67) | 3,839 | (12)                 | 6,784 | (20)         | 35,177 |